98%
921
2 minutes
20
Cellular membranes are complex systems that consist of hundreds of different lipid species. Their investigation often relies on simple bilayer models including few synthetic lipid species. Glycerophospholipids (GPLs) extracted from cells are a valuable resource to produce advanced models of biological membranes. Here, we present the optimisation of a method previously reported by our team for the extraction and purification of various GPL mixtures from Pichia pastoris. The implementation of an additional purification step by High Performance Liquid Chromatography-Evaporative Light Scattering Detector (HPLC-ELSD) enabled for a better separation of the GPL mixtures from the neutral lipid fraction that includes sterols, and also allowed for the GPLs to be purified according to their different polar headgroups. Pure GPL mixtures at significantly high yields were produced through this approach. For this study, we utilised phoshatidylcholine (PC), phosphatidylserine (PS) and phosphatidylglycerol (PG) mixtures. These exhibit a single composition of the polar head, i.e., PC, PS or PG, but contain several molecular species consisting of acyl chains of varying length and unsaturation, which were determined by Gas Chromatography (GC). The lipid mixtures were produced both in their hydrogenous (H) and deuterated (D) versions and were used to form lipid bilayers both on solid substrates and as vesicles in solution. The supported lipid bilayers were characterised by quartz crystal microbalance with dissipation monitoring (QCM-D) and neutron reflectometry (NR), whereas the vesicles by small angle X-ray (SAXS) and neutron scattering (SANS). Our results show that despite differences in the acyl chain composition, the hydrogenous and deuterated extracts produced bilayers with very comparable structures, which makes them valuable to design experiments involving selective deuteration with techniques such as NMR, neutron scattering or infrared spectroscopy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2023.04.135 | DOI Listing |
EJNMMI Radiopharm Chem
September 2025
Department of Experimental Neurooncological Radiopharmacy, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, 04318, Leipzig, Germany.
Background: Copper-mediated radiofluorination (CMRF) is a breakthrough in F-radiochemistry, enabling F incorporation into molecules even at electron-rich aromatic positions. In recent years, several improved protocols have been reported to advance the application of CMRF. These advancements primarily focus on improving radiochemical conversion, expanding substrate scope, and enabling scalability for remote-controlled radiotracer production.
View Article and Find Full Text PDFJ Phys Chem A
September 2025
Department of Chemistry, Institute for Quantum Information Research and Engineering, and Center for Molecular Quantum Transduction, Northwestern University, Evanston, Illinois 60208-3113, United States.
Light-driven formation of radical ion pairs that occurs much faster than their electron spin dynamics results in correlated spins whose coherence properties can be used as a quantum-based electric field sensor. This results from the radical ion pair having charge and spin distributions that track one another. Thus, electric field induced changes in the distance between the two charges are reflected in the spin-spin distance that can be measured directly using out-of-phase electron spin echo envelope modulation (OOP-ESEEM), a pulse-EPR technique.
View Article and Find Full Text PDFPhys Chem Chem Phys
September 2025
Center S3, CNR Institute of Nanoscience, via Campi 213/A, 41125 Modena, Italy.
Infrared spectroscopy is widely used to probe the structural organization of biologically relevant molecules, including peptides, proteins, and nucleic acids. The latter show significant structural diversity, and specific infrared bands provide insights into their conformational ensembles. Among DNA/RNA infrared bands, the CO stretching modes are especially useful, as they are sensitive to the distinct structural arrangements within nucleic acids.
View Article and Find Full Text PDFNMR Biomed
October 2025
Section Biomedical Imaging, Molecular Imaging North Competence Center, Department of Radiology and Neuroradiology, University Hospital Schleswig-Holstein, Kiel University, Kiel, Germany.
Metabolomics provides snapshots of states of metabolites under specific conditions, with nuclear magnetic resonance (NMR) being one of the few noninvasive techniques. However, when applied to intact cells (e.g.
View Article and Find Full Text PDFPhys Chem Chem Phys
August 2025
Area de Quimica Fisica and Instituto de Computacion Cientifica Avanzada, Universidad de Extremadura, 06071 Badajoz, Spain.
Delta-machine learning (Δ-ML) is a highly cost-effective approach for developing high-level potential energy surfaces (PESs) from a large number of low-level configurations. In particular, the high flexibility of the analytical potential energy surface developed previously by our group is exploited to efficiently sample points from the low-level data set and, using information from the highly accurate permutation invariant polynomial neural network (PIP-NN) surface, construct the Δ-ML PES. This approach is applied to the well-known H + CH hydrogen abstraction reaction.
View Article and Find Full Text PDF