98%
921
2 minutes
20
Water adsorption-driven heat transfer (AHT) technology has emerged as a promising solution to address crisis of the global energy consumption and environmental pollution of current heating and cooling processes. Hydrophilicity of water adsorbents plays a decisive role in these applications. This work reports an easy, green, and inexpensive approach to tuning the hydrophilicity of metal-organic frameworks (MOFs) by incorporating mixed linkers, isophthalic acid (IPA), and 3,5-pyridinedicarboxylic acid (PYDC), with various ratios in a series of Al-xIPA-(100-x)PYDC (x: feeding ratio of IPA) MOFs. The designed mixed-linkers MOFs show a variation of hydrophilicity along the fraction of the linkers. Representative compounds with a proportional mixed linker ratio denoted as KMF-2, exhibit an S-shaped isotherm, an excellent coefficient of performance of 0.75 (cooling) and 1.66 (heating) achieved with low driving temperature below 70 °C which offers capability to employ solar or industrial waste heat, remarkable volumetric specific energy capacity (235 kWh m ) and heat-storage capacity (330 kWh m ). The superiority of KMF-2 to IPA or PYDC-containing single-linker MOFs (CAU-10-H and CAU-10pydc, respectively) and most of benchmark adsorbents illustrate the effectiveness of the mixed-linker strategy to design AHT adsorbents with promising performance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10375118 | PMC |
http://dx.doi.org/10.1002/advs.202301311 | DOI Listing |
Soft Matter
September 2025
Nestlé Product Technology Centre, York, YO31 8FY, UK.
Particles with some degree of hydrophilicity are known to aggregate when directly dispersed in non-aqueous media. Proteins are generally insoluble in oil and have complex surface properties, but they may form networks in oil like more simple colloidal particles, depending on particle size and surface hydrophilicity. Here, the particle size of pea protein isolate (PPI) particles in oil was reduced to submicron sizes by stirred media milling.
View Article and Find Full Text PDFBlood, which forms part of the systemic circulatory system, contains proteins from various tissues and organs. Hence, blood samples are ideal vehicles for studying diseases and physiological states. Plasma is an important component of blood and is essential for clinical proteomics research.
View Article and Find Full Text PDFJ Mater Chem B
September 2025
Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 17 avenue des Sciences, 91400 Orsay, France.
To target peripheral opioid receptors for postoperative pain relief while minimizing systemic opioid side effects, low doses of buprenorphine hydrochloride (0.8 up to 4.8 mg mL) were loaded into prefabricated, hydrophilic, degradable polyethylene glycol-based micropheres (PEG-MS, 50-100 μm) used as a drug delivery platform.
View Article and Find Full Text PDFPolymers (Basel)
August 2025
Academy of Romanian Scientists (ARS), Str. Ilfov Nr. 3, Sector 5, 050044 Bucharest, Romania.
Carbon nanohorns (CNHs), along with their nanocomposites and nanohybrids, have shown significant potential for humidity (RH) monitoring at room temperature (RT) due to their exceptional physicochemical and electronic properties, such as high surface area, tunable porosity, and stability in nanocomposites. Resistive sensors incorporating CNHs have demonstrated superior sensitivity compared to traditional carbon nanomaterials, such as carbon nanotubes and graphene derivatives, particularly in specific RH ranges. This review highlights recent advancements in CNH-based resistive RH sensors, discussing effective synthesis methods (e.
View Article and Find Full Text PDFMaterials (Basel)
August 2025
Programa de Pós-Graduação em Ciência da Saúde, Universidade Federal do Rio Grande do Norte, Natal 59012-570, RN, Brazil.
This study investigates a novel approach based on micro-pulse plasma electrolytic oxidation (μPPEO), aiming to improve the control over key parameters such as the Ca/P ratio, the formation of anatase and rutile phases, and the porosity of titanium surfaces-factors that are critical for enhancing bioactivity. By employing electrical micro-pulses with widths of 50 μs or 100 μs, our aim was to restrict the discharge time and subsequent surface/electrolyte reactions. The results demonstrate that μPPEO-treated surfaces exhibit uniform pore diameters, a Ca/P ratio of approximately 1.
View Article and Find Full Text PDF