A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

A machine learning approach for the diagnosis of obstructive sleep apnoea using oximetry, demographic and anthropometric data. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Introduction: Obstructive sleep apnoea (OSA) is a serious but underdiagnosed condition. Demand for the gold standard diagnostic polysomnogram (PSG) far exceeds its availability. More efficient diagnostic methods are needed, even in tertiary settings. Machine learning (ML) models have strengths in disease prediction and early diagnosis. We explored the use of ML with oximetry, demographic and anthropometric data to diagnose OSA.

Methods: A total of 2,996 patients were included for modelling and divided into test and training sets. Seven commonly used supervised learning algorithms were trained with the data. Sensitivity (recall), specificity, positive predictive value (PPV) (precision), negative predictive value, area under the receiver operating characteristic curve (AUC) and F1 measure were reported for each model.

Results: In the best performing four-class model (neural network model predicting no, mild, moderate or severe OSA), a prediction of moderate and/or severe disease had a combined PPV of 94%; one out of 335 patients had no OSA and 19 had mild OSA. In the best performing two-class model (logistic regression model predicting no-mild vs. moderate-severe OSA), the PPV for moderate-severe OSA was 92%; two out of 350 patients had no OSA and 26 had mild OSA.

Conclusion: Our study showed that the prediction of moderate-severe OSA in a tertiary setting with an ML approach is a viable option to facilitate early identification of OSA. Prospective studies with home-based oximeters and analysis of other oximetry variables are the next steps towards formal implementation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12063937PMC
http://dx.doi.org/10.4103/singaporemedj.SMJ-2022-170DOI Listing

Publication Analysis

Top Keywords

moderate-severe osa
12
osa
9
machine learning
8
obstructive sleep
8
sleep apnoea
8
oximetry demographic
8
demographic anthropometric
8
anthropometric data
8
best performing
8
model predicting
8

Similar Publications