98%
921
2 minutes
20
Triadin knockout syndrome (TKOS) is a malignant arrhythmia disorder caused by recessive null variants in TRDN-encoded cardiac triadin. Induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) were generated from two unrelated TKOS patients and an unrelated control. CRISPR-Cas9 gene editing was used to insert homozygous TRDN-p.D18fs13 into a control line to generate a TKOS model (TRDN). Western blot confirmed total knockout of triadin in patient-specific and TRDN iPSC-CMs. iPSC-CMs from both patients revealed a prolonged action potential duration (APD) at 90% repolarization, and this was normalized by protein replacement of triadin. APD prolongation was confirmed in TRDN iPSC-CMs. TRDN iPSC-CMs revealed that loss of triadin underlies decreased expression and co-localization of key calcium handling proteins, slow and decreased calcium release from the sarcoplasmic reticulum, and slow inactivation of the L-type calcium channel leading to frequent cellular arrhythmias, including early and delayed afterdepolarizations and APD alternans.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10202692 | PMC |
http://dx.doi.org/10.1016/j.stemcr.2023.04.005 | DOI Listing |
Stem Cell Reports
May 2023
Department of Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, MN, USA; Department of Cardiovascular Medicine, Division of Heart Rhythm Services, Mayo Clinic, Rochester, MN, USA; Department of Pediatric and Adolescent M
Triadin knockout syndrome (TKOS) is a malignant arrhythmia disorder caused by recessive null variants in TRDN-encoded cardiac triadin. Induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) were generated from two unrelated TKOS patients and an unrelated control. CRISPR-Cas9 gene editing was used to insert homozygous TRDN-p.
View Article and Find Full Text PDF