A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

vissE.cloud: a webserver to visualise higher order molecular phenotypes from enrichment analysis. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Gene-set analysis (GSA) dominates the functional interpretation of omics data and downstream hypothesis generation. Despite its ability to summarise thousands of measurements into semantically interpretable components, GSA often results in hundreds of significantly enriched gene-sets. However, summarisation and effective visualisation of GSA results to facilitate hypothesis generation is still lacking. While some webservers provide gene-set visualization tools, there is still a need for tools that can effectively summarize and guide exploration of GSA results. To enable versatility, webservers accept gene lists as input, however, none provide end-to-end solutions for emerging data types such as single-cell and spatial omics. Here, we present vissE.Cloud, a webserver for end-to-end gene-set analysis, offering gene-set summarisation and highly interactive visualisation. vissE.Cloud uses algorithms from our earlier R package vissE to summarise GSA results by identifying biological themes. We maintain versatility by allowing analysis of gene lists, as well as, analysis of raw single-cell and spatial omics data, including CosMx and Xenium data, making vissE.Cloud the first webserver to provide end-to-end gene-set analysis of sub-cellular localised spatial data. Structuring the results hierarchically allows swift interactive investigations of results at the gene, gene-set, and clusters level. vissE.Cloud is freely available at https://www.vissE.Cloud.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10320187PMC
http://dx.doi.org/10.1093/nar/gkad337DOI Listing

Publication Analysis

Top Keywords

vissecloud webserver
12
gene-set analysis
12
omics data
8
hypothesis generation
8
gene lists
8
provide end-to-end
8
single-cell spatial
8
spatial omics
8
end-to-end gene-set
8
analysis
6

Similar Publications