A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

A multiparametric clinic-ultrasomics nomogram for predicting extremity soft-tissue tumor malignancy: a combined retrospective and prospective bicentric study. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objective: We aimed at building and testing a multiparametric clinic-ultrasomics nomogram for prediction of malignant extremity soft-tissue tumors (ESTTs).

Materials And Methods: This combined retrospective and prospective bicentric study assessed the performance of the multiparametric clinic-ultrasomics nomogram to predict the malignancy of ESTTs, when compared with a conventional clinic-radiologic nomogram. A dataset of grayscale ultrasound (US), color Doppler flow imaging (CDFI), and elastography images for 209 ESTTs were retrospectively enrolled from one hospital, and divided into the training and validation cohorts. A multiparametric ultrasomics signature was built based on multimodal ultrasomic features extracted from the grayscale US, CDFI, and elastography images of ESTTs in the training cohort. Another conventional radiologic score was built based on multimodal US features as interpreted by two experienced radiologists. Two nomograms that integrated clinical risk factors and the multiparameter ultrasomics signature or conventional radiologic score were respectively developed. Performance of the two nomograms was validated in the retrospective validation cohort, and tested in a prospective dataset of 51 ESTTs from the second hospital.

Results: The multiparametric ultrasomics signature was built based on seven grayscale ultrasomic features, three CDFI ultrasomic features, and one elastography ultrasomic feature. The conventional radiologic score was built based on five multimodal US characteristics. Predictive performance of the multiparametric clinic-ultrasomics nomogram was superior to that of the conventional clinic-radiologic nomogram in the training (area under the receiver operating characteristic curve [AUC] 0.970 vs. 0.890, p = 0.006), validation (AUC: 0.946 vs. 0.828, p = 0.047) and test (AUC: 0.934 vs. 0.842, p = 0.040) cohorts, respectively. Decision curve analysis of combined training, validation and test cohorts revealed that the multiparametric clinic-ultrasomics nomogram had a higher overall net benefit than the conventional clinic-radiologic model.

Conclusion: The multiparametric clinic-ultrasomics nomogram can accurately predict the malignancy of ESTTs.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11547-023-01639-0DOI Listing

Publication Analysis

Top Keywords

multiparametric clinic-ultrasomics
24
clinic-ultrasomics nomogram
24
built based
16
conventional clinic-radiologic
12
ultrasomics signature
12
based multimodal
12
ultrasomic features
12
conventional radiologic
12
radiologic score
12
multiparametric
8

Similar Publications