Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Objective: We aimed at building and testing a multiparametric clinic-ultrasomics nomogram for prediction of malignant extremity soft-tissue tumors (ESTTs).
Materials And Methods: This combined retrospective and prospective bicentric study assessed the performance of the multiparametric clinic-ultrasomics nomogram to predict the malignancy of ESTTs, when compared with a conventional clinic-radiologic nomogram. A dataset of grayscale ultrasound (US), color Doppler flow imaging (CDFI), and elastography images for 209 ESTTs were retrospectively enrolled from one hospital, and divided into the training and validation cohorts. A multiparametric ultrasomics signature was built based on multimodal ultrasomic features extracted from the grayscale US, CDFI, and elastography images of ESTTs in the training cohort. Another conventional radiologic score was built based on multimodal US features as interpreted by two experienced radiologists. Two nomograms that integrated clinical risk factors and the multiparameter ultrasomics signature or conventional radiologic score were respectively developed. Performance of the two nomograms was validated in the retrospective validation cohort, and tested in a prospective dataset of 51 ESTTs from the second hospital.
Results: The multiparametric ultrasomics signature was built based on seven grayscale ultrasomic features, three CDFI ultrasomic features, and one elastography ultrasomic feature. The conventional radiologic score was built based on five multimodal US characteristics. Predictive performance of the multiparametric clinic-ultrasomics nomogram was superior to that of the conventional clinic-radiologic nomogram in the training (area under the receiver operating characteristic curve [AUC] 0.970 vs. 0.890, p = 0.006), validation (AUC: 0.946 vs. 0.828, p = 0.047) and test (AUC: 0.934 vs. 0.842, p = 0.040) cohorts, respectively. Decision curve analysis of combined training, validation and test cohorts revealed that the multiparametric clinic-ultrasomics nomogram had a higher overall net benefit than the conventional clinic-radiologic model.
Conclusion: The multiparametric clinic-ultrasomics nomogram can accurately predict the malignancy of ESTTs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11547-023-01639-0 | DOI Listing |