Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Aims/hypothesis: The Latino population has been systematically underrepresented in large-scale genetic analyses, and previous studies have relied on the imputation of ungenotyped variants based on the 1000 Genomes (1000G) imputation panel, which results in suboptimal capture of low-frequency or Latino-enriched variants. The National Heart, Lung, and Blood Institute (NHLBI) Trans-Omics for Precision Medicine (TOPMed) released the largest multi-ancestry genotype reference panel representing a unique opportunity to analyse rare genetic variations in the Latino population. We hypothesise that a more comprehensive analysis of low/rare variation using the TOPMed panel would improve our knowledge of the genetics of type 2 diabetes in the Latino population.

Methods: We evaluated the TOPMed imputation performance using genotyping array and whole-exome sequence data in six Latino cohorts. To evaluate the ability of TOPMed imputation to increase the number of identified loci, we performed a Latino type 2 diabetes genome-wide association study (GWAS) meta-analysis in 8150 individuals with type 2 diabetes and 10,735 control individuals and replicated the results in six additional cohorts including whole-genome sequence data from the All of Us cohort.

Results: Compared with imputation with 1000G, the TOPMed panel improved the identification of rare and low-frequency variants. We identified 26 genome-wide significant signals including a novel variant (minor allele frequency 1.7%; OR 1.37, p=3.4 × 10). A Latino-tailored polygenic score constructed from our data and GWAS data from East Asian and European populations improved the prediction accuracy in a Latino target dataset, explaining up to 7.6% of the type 2 diabetes risk variance.

Conclusions/interpretation: Our results demonstrate the utility of TOPMed imputation for identifying low-frequency variants in understudied populations, leading to the discovery of novel disease associations and the improvement of polygenic scores.

Data Availability: Full summary statistics are available through the Common Metabolic Diseases Knowledge Portal ( https://t2d.hugeamp.org/downloads.html ) and through the GWAS catalog ( https://www.ebi.ac.uk/gwas/ , accession ID: GCST90255648). Polygenic score (PS) weights for each ancestry are available via the PGS catalog ( https://www.pgscatalog.org , publication ID: PGP000445, scores IDs: PGS003443, PGS003444 and PGS003445).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10244266PMC
http://dx.doi.org/10.1007/s00125-023-05912-9DOI Listing

Publication Analysis

Top Keywords

type diabetes
20
topmed imputation
16
latino population
8
topmed panel
8
sequence data
8
low-frequency variants
8
polygenic score
8
imputation
7
latino
6
topmed
6

Similar Publications

Background: We investigated circulating protein profiles and molecular pathways among various chronic kidney disease (CKD) etiologies to study its underlying molecular heterogeneity.

Methods: We conducted a proteomic biomarker analysis in the DAPA-CKD trial recruiting adults with and without type 2 diabetes with an eGFR of 25 to 75 mL/min/1.73m2 and a UACR of 200 to 5000 mg/g.

View Article and Find Full Text PDF

Importance: The cardiovascular benefits of glucagon-like peptide-1 receptor agonists (GLP-1 RAs) may vary by body mass index (BMI), but evidence on BMI-specific outcomes remains limited.

Objective: To investigate the associations of GLP-1 RA use with cardiovascular and kidney outcomes across BMI categories in patients with type 2 diabetes.

Design, Setting, And Participants: This retrospective cohort study used the Chang Gung Research Database, a clinical dataset covering multiple hospitals in Taiwan.

View Article and Find Full Text PDF

Importance: Youth living with type 1 diabetes (T1D) are increasingly choosing automated insulin delivery (AID) systems to manage their blood glucose. Few systematic reviews meta-analyzing results from randomized clinical trials (RCTs) are available to guide decision-making.

Objective: To study the association of prolonged AID system use in an outpatient setting with measures of glucose management and quality of life in youth with T1D.

View Article and Find Full Text PDF

Artificial intelligence (AI) is increasingly applied in nutrition science to support clinical decision-making, prevent diet-related diseases such as obesity and type 2 diabetes, and improve nutrition care in both preventive and therapeutic settings. By analyzing diverse datasets, AI systems can support highly individualized nutritional guidance. We focus on machine learning applications and image recognition tools for dietary assessment and meal planning, highlighting their potential to enhance patient engagement and adherence through mobile apps and real-time feedback.

View Article and Find Full Text PDF

To date, the closed-loop system represents the best commercialized management of type 1 diabetes. However, mealtimes still require carbohydrate estimation and are often associated with postprandial hyperglycemia which may contribute to poor metabolic control and long -term complications. A multicentre, prospective, non-interventional clinical trial was designed to determine the effectiveness of a novel algorithm to predict changes in blood glucose levels two hours after a usual meal.

View Article and Find Full Text PDF