Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The ability to control the activation of prodrugs by transition metals has been shown to have great potential for controlled drug release in cancer cells. However, the strategies developed so far promote the cleavage of C-O or C-N bonds, which limits the scope of drugs to only those that present amino or hydroxyl groups. Here, we report the decaging of an -quinone prodrug, a propargylated β-lapachone derivative, through a palladium-mediated C-C bond cleavage. The reaction's kinetic and mechanistic behavior was studied under biological conditions along with computer modeling. The results indicate that palladium (II) is the active species for the depropargylation reaction, activating the triple bond for nucleophilic attack by a water molecule before the C-C bond cleavage takes place. Palladium iodide nanoparticles were found to efficiently trigger the C-C bond cleavage reaction under biocompatible conditions. In drug activation assays in cells, the protected analogue of β-lapachone was activated by nontoxic amounts of nanoparticles, which restored drug toxicity. The palladium-mediated -quinone prodrug activation was further demonstrated in zebrafish tumor xenografts, which resulted in a significant anti-tumoral effect. This work expands the transition-metal-mediated bioorthogonal decaging toolbox to include cleavage of C-C bonds and payloads that were previously not accessible by conventional strategies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10197128PMC
http://dx.doi.org/10.1021/jacs.3c01960DOI Listing

Publication Analysis

Top Keywords

c-c bond
16
bond cleavage
16
bioorthogonal decaging
8
-quinone prodrug
8
cleavage
6
c-c
5
bond
5
expanding transition
4
transition metal-mediated
4
metal-mediated bioorthogonal
4

Similar Publications