Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Diffraction is the main physical effect involved in the imaging process of holographic displays. In the application of near-eye displays, it generates physical limits that constrain the field of view of the devices. In this contribution, we evaluate experimentally an alternative approach for a holographic display based mainly on refraction. This unconventional imaging process, based on sparse aperture imaging, could lead to integrated near-eye displays through retinal projection, with a larger field of view. We introduce for this evaluation an in-house holographic printer that allows the recording of holographic pixel distributions at a microscopic scale. We show how these microholograms can encode angular information that overcomes the diffraction limit and could alleviate the space bandwidth constraint usually associated with conventional display design.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/AO.478849 | DOI Listing |