98%
921
2 minutes
20
Background: Recently, artificial intelligence (AI)-based applications for chest imaging have emerged as potential tools to assist clinicians in the diagnosis and management of patients with coronavirus disease 2019 (COVID-19).
Objectives: To develop a deep learning-based clinical decision support system for automatic diagnosis of COVID-19 on chest CT scans. Secondarily, to develop a complementary segmentation tool to assess the extent of lung involvement and measure disease severity.
Methods: The Imaging COVID-19 AI initiative was formed to conduct a retrospective multicentre cohort study including 20 institutions from seven different European countries. Patients with suspected or known COVID-19 who underwent a chest CT were included. The dataset was split on the institution-level to allow external evaluation. Data annotation was performed by 34 radiologists/radiology residents and included quality control measures. A multi-class classification model was created using a custom 3D convolutional neural network. For the segmentation task, a UNET-like architecture with a backbone Residual Network (ResNet-34) was selected.
Results: A total of 2,802 CT scans were included (2,667 unique patients, mean [standard deviation] age = 64.6 [16.2] years, male/female ratio 1.3:1). The distribution of classes (COVID-19/Other type of pulmonary infection/No imaging signs of infection) was 1,490 (53.2%), 402 (14.3%), and 910 (32.5%), respectively. On the external test dataset, the diagnostic multiclassification model yielded high micro-average and macro-average AUC values (0.93 and 0.91, respectively). The model provided the likelihood of COVID-19 vs other cases with a sensitivity of 87% and a specificity of 94%. The segmentation performance was moderate with Dice similarity coefficient (DSC) of 0.59. An imaging analysis pipeline was developed that returned a quantitative report to the user.
Conclusion: We developed a deep learning-based clinical decision support system that could become an efficient concurrent reading tool to assist clinicians, utilising a newly created European dataset including more than 2,800 CT scans.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10153726 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0285121 | PLOS |
Comput Methods Biomech Biomed Engin
September 2025
Institute of Radio Physics and Electronics, University of Calcutta, Kolkata, India.
Parkinson's disease (PD) is a neurodegenerative condition that impairs motor functions. Accurate and early diagnosis is essential for enhancing well-being and ensuring effective treatment. This study proposes a deep learning-based approach for PD detection using EEG signals.
View Article and Find Full Text PDFRadiol Adv
September 2024
Department of Radiology, Northwestern University and Northwestern Medicine, Chicago, IL, 60611, United States.
Background: In clinical practice, digital subtraction angiography (DSA) often suffers from misregistration artifact resulting from voluntary, respiratory, and cardiac motion during acquisition. Most prior efforts to register the background DSA mask to subsequent postcontrast images rely on key point registration using iterative optimization, which has limited real-time application.
Purpose: Leveraging state-of-the-art, unsupervised deep learning, we aim to develop a fast, deformable registration model to substantially reduce DSA misregistration in craniocervical angiography without compromising spatial resolution or introducing new artifacts.
J Biomed Opt
September 2025
Leibniz University Hannover, Hannover Centre for Optical Technologies, Hannover, Germany.
Significance: Melanoma's rising incidence demands automatable high-throughput approaches for early detection such as total body scanners, integrated with computer-aided diagnosis. High-quality input data is necessary to improve diagnostic accuracy and reliability.
Aim: This work aims to develop a high-resolution optical skin imaging module and the software for acquiring and processing raw image data into high-resolution dermoscopic images using a focus stacking approach.
Front Vet Sci
August 2025
Pathobiology and Population Science, Royal Veterinary College, Hatfield, United Kingdom.
Diffuse large B-cell lymphoma is the most common type of non-Hodgkin lymphoma (NHL) in humans, accounting for about 30-40% of NHL cases worldwide. Canine diffuse large B-cell lymphoma (cDLBCL) is the most common lymphoma subtype in dogs and demonstrates an aggressive biologic behaviour. For tissue biopsies, current confirmatory diagnostic approaches for enlarged lymph nodes rely on expert histopathological assessment, which is time-consuming and requires specialist expertise.
View Article and Find Full Text PDFVet World
July 2025
Department of Veterinary Science, Faculty of Veterinary Medicine, Rajamangala University of Technology Tawan-OK, Chonburi, Thailand.
Background And Aim: Granulosa cells (GCs) are crucial mediators of follicular development and oocyte competence in goats, with their gene expression profiles serving as potential biomarkers of fertility. However, the lack of a standardized, quantifiable method to assess GC quality using transcriptomic data has limited the translation of such findings into reproductive applications. This study aimed to develop a hybrid deep learning model integrating one-dimensional convolutional neural networks (1DCNNs) and gated recurrent units (GRUs) to classify GCs as fertility-supporting (FS) or non-fertility-supporting (NFS) using single-cell RNA sequencing (scRNA-seq) data.
View Article and Find Full Text PDF