98%
921
2 minutes
20
Mechanical loading is a key factor governing bone adaptation. Both preclinical and clinical studies have demonstrated its effects on bone tissue, which were also notably predicted in the mechanostat theory. Indeed, existing methods to quantify bone mechanoregulation have successfully associated the frequency of (re)modeling events with local mechanical signals, combining time-lapsed micro-computed tomography (micro-CT) imaging and micro-finite element (micro-FE) analysis. However, a correlation between the local surface velocity of (re)modeling events and mechanical signals has not been shown. As many degenerative bone diseases have also been linked to impaired bone (re)modeling, this relationship could provide an advantage in detecting the effects of such conditions and advance our understanding of the underlying mechanisms. Therefore, in this study, we introduce a novel method to estimate (re)modeling velocity curves from time-lapsed mouse caudal vertebrae data under static and cyclic mechanical loading. These curves can be fitted with piecewise linear functions as proposed in the mechanostat theory. Accordingly, new (re)modeling parameters can be derived from such data, including formation saturation levels, resorption velocity moduli, and (re)modeling thresholds. Our results revealed that the norm of the gradient of strain energy density yielded the highest accuracy in quantifying mechanoregulation data using micro-finite element analysis with homogeneous material properties, while effective strain was the best predictor for micro-finite element analysis with heterogeneous material properties. Furthermore, (re)modeling velocity curves could be accurately described with piecewise linear and hyperbola functions (root mean square error below 0.2 µm/day for weekly analysis), and several (re)modeling parameters determined from these curves followed a logarithmic relationship with loading frequency. Crucially, (re)modeling velocity curves and derived parameters could detect differences in mechanically driven bone adaptation, which complemented previous results showing a logarithmic relationship between loading frequency and net change in bone volume fraction over 4 weeks. Together, we expect this data to support the calibration of models of bone adaptation and the characterization of the effects of mechanical loading and pharmaceutical treatment interventions .
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10126906 | PMC |
http://dx.doi.org/10.3389/fbioe.2023.1140673 | DOI Listing |
Infect Immun
September 2025
Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University, Düsseldorf, Germany.
Lymphotoxin β receptor (LTβR/TNFRSF3) signaling plays a crucial role in immune defense. Notably, LTβR-deficient (LTβR) mice exhibit severe defects in innate and adaptive immunity against various pathogens and succumb to infection. Here, we investigated the bone marrow (BM) and peritoneal cavity (PerC) compartments of LTβR mice during infection, demonstrating perturbed B-cell and T-cell subpopulations in the absence of LTβR signaling.
View Article and Find Full Text PDFAdv Sci (Weinh)
September 2025
School of Stomatology, Xuzhou Medical University, Affiliated Stomatological Hospital of Xuzhou Medical University, Xuzhou, 221004, China.
Musculoskeletal disorders, including bone fractures, osteoarthritis, and muscle injuries, represent a leading cause of global disability, revealing the urgency for advanced therapeutic solutions. However, current therapies face limitations including donor-site morbidity, immune rejection, and inadequate mimicry of dynamic tissue repair processes. DNA-based hydrogels emerge as transformative platforms for musculoskeletal reconstruction, with their sequence programmability, dynamic adaptability, and biocompatibility to balance structural support and biological functions.
View Article and Find Full Text PDFJ Bone Miner Res
September 2025
Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States.
Autosomal Dominant Osteopetrosis (ADO) is a rare, osteosclerotic disorder usually caused by missense variants in the CLCN7 gene, resulting in impaired osteoclastic bone resorption. Penetrance is incomplete and disease severity varies widely, even among relatives within the same family. Although ADO can cause visual loss, osteonecrosis, osteomyelitis, and bone marrow failure, the most common complication of ADO is fracture.
View Article and Find Full Text PDFSci Rep
September 2025
Department of Palaeobiology, Swedish Museum of Natural History, Stockholm, 10405, Sweden.
Ichthyosaurs were the first fully marine tetrapods, and evolved a streamlined body, flippers, live birth, and endothermy-like physiology. However, the transition to these adaptations and how it relates to divergence into ocean environments is ambiguous. Here, we use vertebral bone microstructure to document the first ontogenetic series of two Early Triassic taxa that include the oldest ichthyosaur foetal fossils.
View Article and Find Full Text PDFBull Cancer
September 2025
Direction des soins, centre hospitalier de Brive, 2, boulevard du Dr-Verlhac, 19100 Brive, France. Electronic address:
Multiple myeloma is a haematologic malignancy of the bone marrow with an increasing incidence, primarily affecting an elderly and frail population. It benefits from innovative treatments that have been shown to extend patient survival. However, 2% of patients die from infections during the first year of treatment, despite the availability of prophylactic treatments.
View Article and Find Full Text PDF