Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Noncoding RNAs (ncRNAs) play fundamental roles in cardiac development and cardiovascular diseases (CVDs), which are a major cause of morbidity and mortality. With advances in RNA sequencing technology, the focus of recent research has transitioned from studies of specific candidates to whole transcriptome analyses. Thanks to these types of studies, new ncRNAs have been identified for their implication in cardiac development and CVDs. In this review, we briefly describe the classification of ncRNAs into microRNAs, long ncRNAs, and circular RNAs. We then discuss their critical roles in cardiac development and CVDs by citing the most up-to-date research articles. More specifically, we summarize the roles of ncRNAs in the formation of the heart tube and cardiac morphogenesis, cardiac mesoderm specification, and embryonic cardiomyocytes and cardiac progenitor cells. We also highlight ncRNAs that have recently emerged as key regulators in CVDs by focusing on six of them. We believe that this review concisely addresses perhaps not all but certainly the major aspects of current progress in ncRNA research in cardiac development and CVDs. Thus, this review would be beneficial for readers to obtain a recent picture of key ncRNAs and their mechanisms of action in cardiac development and CVDs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10143661PMC
http://dx.doi.org/10.3390/jcdd10040166DOI Listing

Publication Analysis

Top Keywords

cardiac development
24
development cvds
16
cardiac
9
noncoding rnas
8
key regulators
8
development cardiovascular
8
cardiovascular diseases
8
roles cardiac
8
cvds review
8
ncrnas
7

Similar Publications

Background: The success of disease registry systems (DRSs) depends on developing software that aligns with the registry's specific needs.

Objective: This study focuses on localising the Checklist with Items for Patient Registry sOftware Systems (CIPROS) to facilitate the DRS assessment.

Method: This applied and cross-sectional study was carried out in 2023 in six phases.

View Article and Find Full Text PDF

Background: High-density lipoprotein (HDL) function, rather than its concentration, plays a crucial role in the development of coronary artery disease (CAD). Diminished HDL antioxidant properties, indicated by elevated oxidized HDL (nHDL) and diminished paraoxonase-1 (PON-1) activity, may contribute to vascular dysfunction and inflammation. Data on these associations in CAD patients, including acute coronary syndrome (ACS), remain limited.

View Article and Find Full Text PDF

TMVR for the Treatment of Mitral Regurgitation: A State-of-the-Art Review.

Circ Cardiovasc Interv

September 2025

Department of Biomedical Sciences, Humanitas University, Pieve Emanuele-Milan, Italy (F.T., G.A., M.G., K.S., D.D., G.S., M.C.).

Mitral regurgitation is the most common valve disease worldwide. Despite its wide success in inoperable or high-risk surgical patients, transcatheter edge-to-edge repair remains limited by some anatomic features and the not negligible rate of significant residual regurgitation. Transcatheter mitral valve replacement has emerged as a viable alternative that promises to overcome these issues, but its development has been progressing slowly.

View Article and Find Full Text PDF

Introduction: Cardiac amyloidosis is an underdiagnosed disease, and its prevalence is probably higher than previously estimated. We aimed to investigate the effect of introducing a systemic diagnostic algorithm for cardiac amyloidosis in clinical practice.

Methods: A systematic diagnostic algorithm was developed and clinically applied in two hospitals in Eastern Denmark.

View Article and Find Full Text PDF

A myotropic AAV vector combined with skeletal muscle -regulatory elements improve glycogen clearance in mouse models of Pompe disease.

Mol Ther Methods Clin Dev

June 2025

Université Paris-Saclay, University Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000 Evry, France.

Pompe disease is a glycogen storage disorder caused by mutations in the acid α-glucosidase (GAA) gene, leading to reduced GAA activity and glycogen accumulation in heart and skeletal muscles. Enzyme replacement therapy with recombinant GAA, the standard of care for Pompe disease, is limited by poor skeletal muscle distribution and immune responses after repeated administrations. The expression of GAA in muscle with adeno-associated virus (AAV) vectors has shown limitations, mainly the low targeting efficiency and immune responses to the transgene.

View Article and Find Full Text PDF