Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Narrowing the emission peak width and adjusting the peak position play a key role in the chromaticity and color accuracy of display devices with the use of quantum dot light-emitting diodes (QD-LEDs). In this study, we developed multinary Cu-In-Ga-S (CIGS) QDs showing a narrow photoluminescence (PL) peak by controlling the Cu fraction, i.e., Cu/(In+Ga), and the ratio of In to Ga composing the QDs. The energy gap of CIGS QDs was enlarged from 1.74 to 2.77 eV with a decrease in the In/(In+Ga) ratio from 1.0 to 0. The PL intensity was remarkably dependent on the Cu fraction, and the PL peak width was dependent on the In/(In+Ga) ratio. The sharpest PL peak at 668 nm with a full width at half maximum (fwhm) of 0.23 eV was obtained for CIGS QDs prepared with ratios of Cu/(In+Ga) = 0.3 and In/(In+Ga) = 0.7, being much narrower than those previously reported with CIGS QDs, fwhm of >0.4 eV. The PL quantum yield of CIGS QDs, 8.3%, was increased to 27% and 46% without a PL peak broadening by surface coating with GaSx and Ga-Zn-S shells, respectively. Considering a large Stokes shift of >0.5 eV and the predominant PL decay component of ∼200-400 ns, the narrow PL peak was assignable to the emission from intragap states. QD-LEDs fabricated with CIGS QDs surface-coated with GaSx shells showed a red color with a narrow emission peak at 688 nm with a fwhm of 0.24 eV.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0144271DOI Listing

Publication Analysis

Top Keywords

cigs qds
24
emission peak
12
peak
9
narrow emission
8
peak width
8
in/in+ga ratio
8
qds
7
cigs
6
development cu-in-ga-s
4
cu-in-ga-s quantum
4

Similar Publications

Narrowing the emission peak width and adjusting the peak position play a key role in the chromaticity and color accuracy of display devices with the use of quantum dot light-emitting diodes (QD-LEDs). In this study, we developed multinary Cu-In-Ga-S (CIGS) QDs showing a narrow photoluminescence (PL) peak by controlling the Cu fraction, i.e.

View Article and Find Full Text PDF

Quantum bandgap buffer layers can improve sunlight absorption in the short wavelength region, hence improving the performance of CIGS solar cells. In this study, we use numerical modelling to determine the impact of various buffer layers' electrical characteristics on the performance of CIGS thin film photovoltaic devices, particularly, carrier concentration and the quantum effect. As well AgS buffer layer has been experimentally examined to fulfilment its effect in term of bulk and quantum bandgap.

View Article and Find Full Text PDF

Conventional Cu(In,Ga)Se (CIGS) solar cells exhibit poor spectral response due to parasitic light absorption in the window and buffer layers at the short wavelength range between 300 and 520 nm. In this study, the CdSe/CdZnS core/shell quantum dots (QDs) acting as a luminescent down-shifting (LDS) layer were inserted between the MgF antireflection coating and the window layer of the CIGS solar cell to improve light harvesting in the short wavelength range. The LDS layer absorbs photons in the short wavelength range and re-emits photons in the 609 nm range, which are transmitted through the window and buffer layer and absorbed in the CIGS layer.

View Article and Find Full Text PDF

White lighting device from composite films embedded with hydrophilic Cu(In, Ga)S2/ZnS and hydrophobic InP/ZnS quantum dots.

Nanotechnology

June 2014

Department of Materials Science and Engineering, Hongik University, Seoul 121-791, Republic of Korea.

Two types of non-Cd quantum dots (QDs)-In/Ga ratio-varied, green-to-greenish-yellow fluorescence-tuned Cu-In-Ga-S (CIGS) alloy ones, and red-emitting InP ones-are synthesized for use as down-converters in conjunction with a blue light-emitting diode (LED). Among a series of Ga-rich CI1-xGxS/ZnS core/shell QDs (x = 0.7, 0.

View Article and Find Full Text PDF

We report the unprecedented fabrication of a planar white lighting quantum dot light-emitting diode (QD-LED) through integrating a CdZnS QD-based blue electroluminescence (EL) device with a free-standing polymethyl methacrylate (PMMA) composite film embedded with orange-emitting Cu-In-S (CIS) green-greenish yellow-emitting Cu-In-Ga-S (CIGS) QDs. The hybrid device successfully generates bicolored white emission that comprises blue EL and downconverted QD photoluminescence. The hybrid QD-LEDs loaded with the composite film embedded with one type of QDs exhibit a limited white spectral coverage, consequently producing low values (<65) in color rendering index (CRI).

View Article and Find Full Text PDF