98%
921
2 minutes
20
Accurately clarifying the applicable spatial scale of 4-Scale model is conducive to improving the accuracy of its application in canopy reflectance simulation of different vegetation types, and to further improving the inversion accuracy of leaf area index, canopy density, and other parameters. Two forest plots (one for broad-leaved forest and one for mixed forest) with each area of 100 m×100 m in Maoershan Experimental Forest Farm, Shangzhi, Heilongjiang, were divided into the spatial scales of 10, 20, 30, 40 and 50 m, respectively. The 4-Scale model was used to simulate forest canopy reflectance. Local mean method, the nearest neighbor method, bilinear interpolation method, and cubic convolution method were used to convert Sentinel-2 images with spatial resolution of 10 m to other scales, with the results being evaluated. The simulated canopy reflectance and remote sensing pixel reflectance were compared and analyzed. The spatial scale of mixed forest and broad-leaved forest suitable for high-precision inversion parameters of 4-Scale model was determined. The results showed that the 4-Scale model underestimated the pixel forest canopy reflectance as a whole. The canopy reflectance of mixed forest and broad-leaved forest had the worst simulation effect at the 20 m scale. Both the root mean square error (RMSE) and the mean absolute error from (MAE) of red and near-infrared band were large. When the scale was >20 m, the simulation effect became better. The applicability of the model was the best when the mixed forest was 40 m and the broad-leaved forest was 30 m. The mean and standard deviation of the reflectance difference between the simulated value and the remote sensing pixel were the minimum in the red and near near-infrared bands, with the minimum RMSE and MAE. The simulation results of mixed forest and broad-leaved forest at 10 m scale were not stable, the rule of mean and standard deviation was inconsistent, and the difference between RMSE and MAE was large under the same band.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.13287/j.1001-9332.202303.025 | DOI Listing |
Tree Physiol
September 2025
College of Science & Engineering and Centre for Tropical Environmental and Sustainability Science, James Cook University, Cairns, QLD, Australia.
Mango (Mangifera indica), a leading tropical fruit crop, is a prime candidate for intensification through modern orchard-management techniques, including canopy manipulation to improve light interception. This study investigated how leaf-level acclimation to light gradients within the canopy of a high-yield, dwarfing mango cultivar (Calypso™) could be used to examine integrated canopy-scale responses. We quantified foliar morphological, biochemical, and physiological traits across a range of canopy positions using this information to model canopy-scale productivity within digital-twin representations of mango under both conventional (i.
View Article and Find Full Text PDFTree Physiol
September 2025
Department of Plant Sciences, University of California, Davis, CA, USA.
Pigment dynamics in temperate evergreen forests remain poorly characterized, despite their year-round photosynthetic activity and importance for carbon cycling. Developing rapid, nondestructive methods to estimate pigment composition enables high-throughput assessment of plant acclimation states. In this study, we investigate the seasonality of eight chlorophyll and carotenoid pigments and hyperspectral reflectance data collected at both the needle (400-2400 nm) and canopy (420-850 nm) scales in Pinus palustris (longleaf pine) at the Ordway Swisher Biological Station in north-central Florida, USA.
View Article and Find Full Text PDFCamb Prism Coast Futur
December 2024
Geoscience Australia, Canberra, Australian Capital Territory, Australia.
Tropical cyclones can significantly impact mangrove forests, with some recovering rapidly, whilst others may change permanently. Inconsistent approaches to quantifying these impacts limit the capacity to identify patterns of damage and recovery across landscapes and cyclone categories. Understanding these patterns is critical as the changing frequency and intensity of cyclones and compounding effects of climate change, particularly sea-level rise, threaten mangroves and their ecosystem services.
View Article and Find Full Text PDFNat Commun
August 2025
Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
Crop leaves absorb approximately 90% of visible photons (400 - 700 nm) but transmit or reflect most far-red (FR) photons (700 - 800 nm). However, some cyanobacteria use FR photons up to 800 nm by incorporating chlorophyll (Chl) d or/and f into their photosystems. Here, we use a 3D canopy model to evaluate whether introducing these pigments could improve photosynthetic performance of field grown soybean.
View Article and Find Full Text PDFSci Rep
August 2025
Institute for Soil Sciences, Centre for Agricultural Research, Department of Soil Physics and Water Management, Budapest, 1116, Hungary.
The present study aimed to investigate specific vegetation indices (VI) at three research sites - one grassland and two vineyards - and evaluate the potential of grassland remote sensing (RS) data to refine Normalized Difference Vegetation Index (NDVI) values in grass-covered inter-row vineyards. The vineyards differed in soil texture, with silt loam at BCS and clay at GB, located on 8-15% slopes. Field monitoring included NDVI, Photochemical Reflectance Index (PRI), and Photosynthetically Active Radiation (PAR) data at different slope positions.
View Article and Find Full Text PDF