Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Bayesian historical borrowing has recently attracted growing interest due to the increasing availability of historical control data, as well as improved computational methodology and software. In this article, we argue that the statistical models used for borrowing may be suboptimal when they do not adjust for differing factors across historical studies such as covariates, dosing regimen, etc. We propose an alternative approach to address these shortcomings. We start by constructing a model based on subject-level historical data to accurately characterize the control treatment by adjusting for known between trials differences. This model is subsequently used to predict the control arm response in the current trial, enabling the derivation of a prior for the treatment effect parameter of another (potentially simpler) model used to analyze the trial efficacy (i.e. the trial model). Our approach is applied to neovascular age-related macular degeneration trials, employing a cross-sectional regression trial model, and a longitudinal non-linear mixed-effects historical model. The latter model characterizes the relationship between clinical response, drug exposure and baseline covariates so that the derived model-informed prior seamlessly adapts to the trial population and can be extrapolated to a different dosing regimen. This approach can yield a more accurate prior for borrowing, thus optimizing gains in efficiency (e.g. increasing power or reducing the sample size) in future trials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/09622802231155597 | DOI Listing |