Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The disposal of red mud (RM), a waste material generated by the aluminum industry, remains a global environmental concern because of its high alkalinity and smaller particle size, which have the potential to pollute air, soil, and water. Recently, efforts have been made to develop a strategy for reusing industrial byproducts, such as RM, and turning waste into value-added products. The use of RM as (i) a supplementary cementitious material for construction and building materials, such as cement, concrete, bricks, ceramics, and geopolymers, and (ii) a catalyst is discussed in this review. Furthermore, the physical, chemical, mineralogical, structural, and thermal properties of RM, as well as its environmental impact, are also discussed in this review. It is possible to conclude that using RM in catalysis, cement, and construction industries is the most efficient way to recycle this byproduct on a large scale. However, the low cementitious properties of RM can be attributed to a reduction in the fresh and mechanical properties of composites incorporating RM. On the other hand, RM can be used as an efficient active catalyst to synthesize organic molecules and reduce air pollution, which not only makes use of solid waste but also lowers the price of the catalyst. The review provides basic information on the characterization of RM and its suitability in various applications, paving the way for more advanced research on the sustainable disposal of RM waste. Future research perspectives on the utilization of RM are also addressed.

Download full-text PDF

Source
http://dx.doi.org/10.1002/tcr.202300039DOI Listing

Publication Analysis

Top Keywords

red mud
8
aluminum industry
8
waste material
8
material construction
8
construction building
8
discussed review
8
waste
5
characterization applications
4
applications red
4
mud aluminum
4

Similar Publications

Phosphogypsum and Carbide Slag Synergy for Red Mud Soil Stabilization: Mechanical Performance, Environmental Impacts, and Micro-scale Mechanisms.

Environ Res

September 2025

China Construction Fourth Engineering Bureau Fifth Construction Engineering Co., Ltd. Nanxin Road, Nanshan District, Shenzhen, 518000, China. Electronic address:

The production of phosphogypsum (PG), calcium carbide slag (CS), and red mud (RM) in global industrial development imposes serious environmental issues. Utilizing CS and PG as curing agents and incorporating RM as a soil substitute can facilitate the solid waste resource utilization. However, few studies have investigated the synergistic effects of PG and CS on the stabilization of RM and soil.

View Article and Find Full Text PDF

Preparing red mud/phosphogypsum-based artificial soils for vegetation restoration is promising. However, how artificial soil develops during vegetation restoration is unclear, especially regarding the relationship between the bacterial community and the development of artificial soil. The bacterial community changes in the early-stage engineering simulation of red mud/phosphogypsum-based artificial soil vegetation restoration were analyzed for the first time in this paper.

View Article and Find Full Text PDF

This study revealed the synthesis of a novel metal-organic framework (MOF) through the reaction between red mud as an industrial waste material, and trimesic acid (TCA) for the adsorption of methyl orange (MO) through Response Surface Methodology (RSM) from aqueous solutions. The synthesis process utilized red mud as a sustainable source of metal ions and TCA as the organic linker to obtain Red Mud-Trimesic Acid MOF (RM/TCA-MOF) under hydrothermal conditions. The synthesized MOF was characterized using various techniques such as Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Field emission scanning electron microscopy (FE-SEM), Energy dispersive X-ray (EDX), Brunauer-Emmett-Teller (BET) surface area analysis, Transmission electron microscopy (TEM), and Thermogravimetric Analysis (TGA).

View Article and Find Full Text PDF

To address the environmental risks associated with large-scale stockpiling of red mud (RM) and coal gangue (CG) and the demand for their high-value utilization, this study proposes a ternary concrete system incorporating RM, fly ash (FA), and CG aggregate. The effects of RM content, FA content, CG aggregate replacement rate, and water-to-binder ratio on workability, mechanical properties, and frost resistance durability were systematically investigated through orthogonal experiments, with the underlying micro-mechanisms revealed by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The results indicate that workability is predominantly governed by the water-to-binder ratio, while the micro-aggregate effect of FA significantly enhances fluidity.

View Article and Find Full Text PDF

Highly alkaline and highly toxic red mud and other bulk industrial solid wastes become severely accumulated, posing huge risks such as soil degradation and environmental pollution. It is urgent to develop a long-term and stable resource disposal method. In the present research, artificial lightweight aggregates were fabricated utilizing industrial solid residues including red mud, phosphate tailing powder, and fly ash as raw materials.

View Article and Find Full Text PDF