A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Verification of Therapeutic Effect through Accelerator Mass Spectrometry-Based Single Cell Level Quantification of hESC-Endothelial Cells Distributed into an Ischemic Model. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

As the potential of pluripotent stem cell-derived differentiated cells has been demonstrated in regenerative medicine, differentiated vascular endothelial cells (ECs) are emerging as a therapeutic agent for the cardiovascular system. To verify the therapeutic efficacy of differentiated ECs in an ischemic model, human embryonic stem cells (hESCs) are induced as EC lineage and produce high-purity ECs through fluorescence-activated cell sorting (FACS). When hESC-ECs are transplanted into a hindlimb ischemic model, it is confirmed that blood flow and muscle regeneration are further improved by creating new blood vessels together with autologous ECs than the primary cell as cord blood endothelial progenitor cells (CB-EPCs). In addition, previously reported studies show the detection of transplanted cells engrafted in blood vessels through various tracking methods, but fail to provide accurate quantitative values over time. In this study, it is demonstrated that hESC-ECs are engrafted approximately sevenfold more than CB-EPCs by using an accelerator mass spectrometry (AMS)-based cell tracking technology that can perform quantification at the single cell level. An accurate quantification index is suggested. It has never been reported in in vivo kinetics of hESC-ECs that can act as therapeutic agents.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adhm.202300476DOI Listing

Publication Analysis

Top Keywords

ischemic model
12
accelerator mass
8
single cell
8
cell level
8
blood vessels
8
cells
6
cell
5
verification therapeutic
4
therapeutic accelerator
4
mass spectrometry-based
4

Similar Publications