A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Soil carbon storage is related to tree functional composition in naturally regenerating tropical forests. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Regenerating tropical forests are increasingly important for their role in the global carbon cycle. Carbon stocks in above-ground biomass can recover to old-growth forest levels within 60-100 years. However, more than half of all carbon in tropical forests is stored below-ground, and our understanding of carbon storage in soils during tropical forest recovery is limited.Importantly, soil carbon accumulation does not necessarily reflect patterns in above-ground biomass carbon accrual during secondary forest succession, and factors related to past land use, species composition and soil characteristics may influence soil carbon storage during forest regrowth.Using tree census data and a measure of tree community shade tolerance (species-specific light response values), we assessed the relationship between soil organic carbon stocks and tree functional groups during secondary succession along a chronosequence of 40- to 120-year-old naturally regenerating secondary forest and old-growth tropical forest stands in Panama.While previous studies found no evidence for increasing soil C storage with secondary forest age, we found a strong relationship between tree functional composition and soil carbon stocks at 0-10 cm depth, whereby carbon stocks increased with the relative influence of light-demanding tree species. Light demanding trees had higher leaf nitrogen but lower leaf density than shade-tolerant trees, suggesting that rapid decomposition of nutrient-rich plant material in forests with a higher proportion of light-demanding species results in greater accumulation of carbon in the surface layer of soils. . We propose that soil carbon storage in secondary tropical forests is more strongly linked to tree functional composition than forest age, and that the persistence of long-lived pioneer trees could enhance soil carbon storage as forests age. Considering shifts in tree functional groups could improve estimates of carbon sequestration potential for climate change mitigation by tropical forest regrowth. Read the free Plain Language Summary for this article on the Journal blog.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10099939PMC
http://dx.doi.org/10.1111/1365-2435.14221DOI Listing

Publication Analysis

Top Keywords

soil carbon
24
carbon storage
20
tree functional
20
tropical forests
16
carbon stocks
16
carbon
14
functional composition
12
tropical forest
12
secondary forest
12
soil
9

Similar Publications