A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

CT-Based Radiomic Nomogram for the Prediction of Chronic Obstructive Pulmonary Disease in Patients with Lung cancer. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Rationale And Objectives: To develop and validate a model for predicting chronic obstructive pulmonary disease (COPD) in patients with lung cancer based on computed tomography (CT) radiomic signatures and clinical and imaging features.

Materials And Methods: We retrospectively enrolled 443 patients with lung cancer who underwent pulmonary function test as the primary cohort. They were randomly assigned to the training (n = 311) or validation (n = 132) set in a 7:3 ratio. Additionally, an independent external cohort of 54 patients was evaluated. The radiomic lung nodule signature was constructed using the least absolute shrinkage and selection operator algorithm, while key variables were selected using logistic regression to develop the clinical and combined models presented as a nomogram.

Results: COPD was significantly related to the radiomics signature in both cohorts. Moreover, the signature served as an independent predictor of COPD in the multivariate regression analysis. For the training, internal, and external cohorts, the area under the receiver operating characteristic curve (ROC, AUC) values of our radiomics signature for COPD prediction were 0.85, 0.85, and 0.76, respectively. Additionally, the AUC values of the radiomic nomogram for COPD prediction were 0.927, 0.879, and 0.762 for the three cohorts, respectively, which outperformed the other two models.

Conclusion: The present study presents a nomogram that incorporates radiomics signatures and clinical and radiological features, which could be used to predict the risk of COPD in patients with lung cancer with one-stop chest CT scanning.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.acra.2023.03.021DOI Listing

Publication Analysis

Top Keywords

patients lung
16
lung cancer
16
radiomic nomogram
8
chronic obstructive
8
obstructive pulmonary
8
pulmonary disease
8
copd patients
8
radiomics signature
8
auc values
8
copd prediction
8

Similar Publications