98%
921
2 minutes
20
Methanotrophs have been identified and isolated from acidic environments such as wetlands, acidic soils, peat bogs, and groundwater aquifers. Due to their methane (CH ) utilization as a carbon and energy source, acidophilic methanotrophs are important in controlling the release of atmospheric CH , an important greenhouse gas, from acidic wetlands and other environments. Methanotrophs have also played an important role in the biodegradation and bioremediation of a variety of pollutants including chlorinated volatile organic compounds (CVOCs) using CH monooxygenases via a process known as cometabolism. Under neutral pH conditions, anaerobic bioremediation via carbon source addition is a commonly used and highly effective approach to treat CVOCs in groundwater. However, complete dechlorination of CVOCs is typically inhibited at low pH. Acidophilic methanotrophs have recently been observed to degrade a range of CVOCs at pH < 5.5, suggesting that cometabolic treatment may be an option for CVOCs and other contaminants in acidic aquifers. This paper provides an overview of the occurrence, diversity, and physiological activities of methanotrophs in acidic environments and highlights the potential application of these organisms for enhancing contaminant biodegradation and bioremediation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10316377 | PMC |
http://dx.doi.org/10.1111/1758-2229.13156 | DOI Listing |
Biodegradation
November 2024
Biotechnology Development and Applications Group, APTIM, 17 Princess Road, Lawrenceville, NJ, 08648, USA.
Anaerobic bioremediation is rarely an effective strategy to treat chlorinated ethenes such as trichloroethene (TCE) in acidic aquifers because partial dechlorination typically results in accumulation of daughter products. Methanotrophs have the capability of oxidizing TCE and other chlorinated volatile organic compounds (CVOCs) to non-toxic products, but their occurrence, diversity, and biodegradation capabilities in acidic environments are largely unknown. This study investigated the impacts of different methane (CH) concentrations and the presence of CVOCs on the community of acidophilic methanotrophs in microcosms prepared from acidic aquifer samples collected upgradient and downgradient of a mulch barrier installed to promote in-situ anaerobic CVOC biodegradation in Maryland, USA.
View Article and Find Full Text PDFInt J Mol Sci
June 2024
School of Biological Sciences, University of Essex, Wivenhoe Park Colchester, Essex CO4 3SQ, UK.
Hell's Gate globin-I (HGb-I) is a thermally stable globin from the aerobic methanotroph . Here we report that HGb-I interacts with lipids stoichiometrically to induce structural changes in the heme pocket, changing the heme iron distal ligation coordination from hexacoordinate to pentacoordinate. Such changes in heme geometry have only been previously reported for cytochrome c and cytoglobin, linked to apoptosis regulation and enhanced lipid peroxidation activity, respectively.
View Article and Find Full Text PDFNat Commun
May 2024
Department of Biological Sciences and Biotechnology, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju, 28644, Republic of Korea.
Aerobic methanotrophic bacteria are considered strict aerobes but are often highly abundant in hypoxic and even anoxic environments. Despite possessing denitrification genes, it remains to be verified whether denitrification contributes to their growth. Here, we show that acidophilic methanotrophs can respire nitrous oxide (NO) and grow anaerobically on diverse non-methane substrates, including methanol, C-C substrates, and hydrogen.
View Article and Find Full Text PDFInt J Syst Evol Microbiol
October 2023
Department of Biological Sciences and Biotechnology, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju 28644, Republic of Korea.
Strain IT6, a thermoacidophilic and facultative methane-oxidizing bacterium, was isolated from a mud-water mixture collected from Pisciarelli hot spring in Pozzuoli, Italy. The novel strain is white when grown in liquid or solid media and forms Gram-negative rod-shaped, non-flagellated, non-motile cells. It conserves energy by aerobically oxidizing methane and hydrogen while deriving carbon from carbon dioxide fixation.
View Article and Find Full Text PDFInt J Syst Evol Microbiol
September 2023
Department of Biological Sciences, University of Bergen, P.O. Box 7803, NO-5020 Bergen, Norway.
The thermo-acidophilic aerobic methanotrophic bacterium, designated strain Kam1 was isolated from an acidic geothermal mud spring in Kamchatka, Russia. Kam1 is Gram-stain-negative, with non-motile cells and non-spore-forming rods, and a diameter of 0.45-0.
View Article and Find Full Text PDF