Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Spectral Indices derived from multispectral remote sensing products are extensively used to monitor Earth system dynamics (e.g. vegetation dynamics, water bodies, fire regimes). The rapid increase of proposed spectral indices led to a high demand for catalogues of spectral indices and tools for their computation. However, most of these resources are either closed-source, outdated, unconnected to a catalogue or lacking a common Application Programming Interface (API). Here we present "Awesome Spectral Indices" (ASI), a standardized catalogue of spectral indices for Earth system research. ASI provides a comprehensive machine readable catalogue of spectral indices, which is linked to a Python library. ASI delivers a broad set of attributes for each spectral index, including names, formulas, and source references. The catalogue can be extended by the user community, ensuring that ASI remains current and enabling a wider range of scientific applications. Furthermore, the Python library enables the application of the catalogue to real-world data and thereby facilitates the efficient use of remote sensing resources in multiple Earth system domains.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10082855PMC
http://dx.doi.org/10.1038/s41597-023-02096-0DOI Listing

Publication Analysis

Top Keywords

spectral indices
24
earth system
16
catalogue spectral
12
remote sensing
12
standardized catalogue
8
spectral
8
python library
8
indices
6
catalogue
5
indices advance
4

Similar Publications

Accurate differentiation between persistent vegetative state (PVS) and minimally conscious state and estimation of recovery likelihood in patients in PVS are crucial. This study analyzed electroencephalography (EEG) metrics to investigate their relationship with consciousness improvements in patients in PVS and developed a machine learning prediction model. We retrospectively evaluated 19 patients in PVS, categorizing them into two groups: those with improved consciousness ( = 7) and those without improvement ( = 12).

View Article and Find Full Text PDF

Significance: The spatial and temporal distribution of fluorophore fractions in biological and environmental systems contains valuable information about the interactions and dynamics of these systems. To access this information, fluorophore fractions are commonly determined by means of their fluorescence emission spectrum (ES) or lifetime (LT). Combining both dimensions in temporal-spectral multiplexed data enables more accurate fraction determination while requiring advanced and fast analysis methods to handle the increased data complexity and size.

View Article and Find Full Text PDF

Phytochromes are photosensor proteins found in plants, fungi, and bacteria. They photoswitch between red light absorbing (Pr) and far-red light absorbing (Pfr) states. Thermal reversion in the dark, however, is an equally important factor in controlling their signaling levels.

View Article and Find Full Text PDF

Development and characterization of a prototype selenium-75 high dose rate brachytherapy source.

Med Phys

September 2025

Medical Physics Unit, Department of Oncology, Faculty of Medicine, McGill University, Montréal, Québec, Canada.

Background: Se ( 120 days, 215 keV) offers advantages over Ir ( 74 days, 360 keV) as a high dose rate brachytherapy source due to its lower gamma energy and longer half-life. Despite its widespread use in industrial gamma radiography, a Se brachytherapy source has yet to be manufactured.

Purpose: A novel Se-based source design with a vanadium diselenide core, titled the SeCure source, was proposed.

View Article and Find Full Text PDF

The interactions of three berberine mid-chain fatty acid salts ([BBR][C], n = 6, 7, 8) with lysozyme (Lyz) are investigated in detail using multi-spectroscopic and molecular docking techniques. Steady-state fluorescence and UV-visible absorption experiments suggest that the binding mechanism of [BBR][C] on Lyz is a static quenching with a binding ratio of 1:1. The compound [BBR][C] exhibits a moderate binding affinity toward Lyz.

View Article and Find Full Text PDF