A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Adaptive Weighted Ranking-Oriented Label Distribution Learning. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Label distribution learning (LDL) is a novel machine-learning paradigm generalized from multilabel learning (MLL). LDL attaches a label distribution to each instance, giving the description degree of different labels. In many real-world applications, key labels, that is, labels with relatively higher description degrees, are preferable to be better predicted. Unfortunately, existing LDL metrics measure the distance or similarity between label distributions from a global perspective, failing to give sufficient attention to key labels. Therefore, we design a novel LDL metric, the description-degree percentile average (DPA), which simultaneously integrates both the exact ranking value and the description degree of each label. The DPA can enhance accuracy in predicting key labels. Furthermore, noting the shape characteristics of the label distributions, we minimize the variance distance between the predicted and the ground-truth label distributions, to better maintain the distinguishability of labels. Finally, we propose an adaptive weighted ranking-oriented LDL algorithm, which is more suitable for realistic LDL problems that require higher accuracy in predicting key labels. We conduct extensive comparison experiments on various types of LDL datasets. Experimental results on both traditional and newly introduced metrics demonstrate the effectiveness of our proposal.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TNNLS.2023.3258976DOI Listing

Publication Analysis

Top Keywords

key labels
16
label distribution
12
label distributions
12
adaptive weighted
8
weighted ranking-oriented
8
distribution learning
8
description degree
8
accuracy predicting
8
predicting key
8
label
7

Similar Publications