A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Microphase transitions of Langmuir-Blodgett lipid-assembled monolayers with new types of ceramides, ultra-long-chain ceramide and 1-O-acylceramide. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Hypothesis: Intercellular lipid lamellae, consisting of ceramide, cholesterol, and free fatty acids, are the primary pathways for substances in the stratum corneum (SC). The microphase transition of lipid-assembled monolayers (LAMs), mimicking an initial layer of the SC, would be affected by new types of ceramides: ceramide with ultra-long chain (CULC) and 1-O-acylceramide (CENP) with three chains in different direction.

Experiments: The LAMs were fabricated with varying the mixing ratio of CULC (or CENP) against base ceramide via Langmuir-Blodgett assembly. Surface pressure-area isotherms and elastic modulus-surface pressure plots were obtained to characterize π-dependent microphase transitions. The surface morphology of LAMs was observed by atomic force microscopy.

Findings: The CULCs favored lateral lipid packing, and the CENPs hindered the lateral lipid packing by lying alignment, which was due to their different molecular structures and conformations. The sporadic clusters and empty spaces in the LAMs with CULC were presumably due to the short-range interactions and self-entanglements of ultra-long alkyl chains following the freely jointed chain model, respectively, which was not noticeably observed in the neat LAM films and the LAM films with CENP. The addition of surfactants disrupted the lateral packing of lipids, thus weakening the LAM elasticity. These findings allowed us to understand the role of CULC and CENP in the lipid assemblies and microphase transition behaviors in an initial layer of SC.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2023.03.174DOI Listing

Publication Analysis

Top Keywords

microphase transitions
8
lipid-assembled monolayers
8
types ceramides
8
microphase transition
8
initial layer
8
culc cenp
8
lateral lipid
8
lipid packing
8
lam films
8
microphase
4

Similar Publications