98%
921
2 minutes
20
The chemistry and structure of the air-ocean interface modulate biogeochemical processes between the ocean and atmosphere and therefore impact sea spray aerosol properties, cloud and ice nucleation, and climate. Protein macromolecules are enriched in the sea surface microlayer and have complex adsorption properties due to the unique molecular balance of hydrophobicity and hydrophilicity. Additionally, interfacial adsorption properties of proteins are of interest as important inputs for ocean climate modeling. Bovine serum albumin is used here as a model protein to investigate the dynamic surface behavior of proteins under several variable conditions including solution ionic strength, temperature, and the presence of a stearic acid (CCOOH) monolayer at the air-water interface. Key vibrational modes of bovine serum albumin are examined via infrared reflectance-absorbance spectroscopy, a specular reflection method that ratios out the solution phase and highlights the aqueous surface to determine, at a molecular level, the surface structural changes and factors affecting adsorption to the solution surface. Amide band reflection absorption intensities reveal the extent of protein adsorption under each set of conditions. Studies reveal the nuanced behavior of protein adsorption impacted by ocean-relevant sodium concentrations. Moreover, protein adsorption is most strongly affected by the synergistic effects of divalent cations and increased temperature.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.3c00249 | DOI Listing |
J Hazard Mater
September 2025
School of Environment and Geography, Qingdao University, Qingdao 266071, China; Carbon Neutrality and Eco-Environmental Technology Innovation Center of Qingdao, Qingdao 266071, China. Electronic address:
In this study, Fe-Ni-layered double hydroxide modified crayfish shell biochar substrate (Fe-Ni-LDH@CSBC) was successfully prepared and introduced into constructed wetland (CW) to research the Cr(VI) removal mechanism through substrate adsorption and microbial action. Adsorption experiments demonstrated the equilibrium adsorption capacities of Fe-Ni-LDH@CSBC for Cr(VI) could reach 1058.48 (C=10 mg/L) and 1394.
View Article and Find Full Text PDFJ Hazard Mater
September 2025
State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), Harbin Institute of Technology, Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China. Electronic address:
The widespread discharge of emerging micropollutants (EMs) into sewer systems has raised serious environmental concerns throughout the world. However, the transformation mechanisms underlying the accumulation of EMs in sewer sediments remain largely unexplored. This study investigated the transformation fate and mechanisms of chloroxylenol (PCMX) in sewer sediments.
View Article and Find Full Text PDFTalanta
August 2025
Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Química Biológica, Junín 956, Buenos Aires, Argentina; Laboratorio de Biofísica Molecular, Instituto de Química y Fisicoquímica Biológicas, UBA - CONICET, Junín 956, Buenos Aires, Argentina. Electronic address:
The quantification of orthophosphate is essential for applications like water quality assessment, soil fertility analysis, metabolic monitoring and enzyme activity evaluation. Chemical quantification methods include the reaction between orthophosphate and molybdate under acidic conditions to form 12-molybdophosphoric acid units, which auto-assembles forming nanometer size particles. The adsorption of malachite green to these nanoparticles allows their spectrophotometric detection constituting one of the most widely used methods to quantify phosphate.
View Article and Find Full Text PDFJ Colloid Interface Sci
September 2025
Instituto de Investigaciones Fisicoquímicas, Teóricas y Aplicadas (INIFTA), UNLP-CONICET, La Plata, Argentina. Electronic address:
Silica-binding peptides (SBPs) are versatile tools for functionalizing silica surfaces in biotechnology, yet the mechanisms underlying their adsorption remain poorly understood. Here, we develop a predictive molecular theory that integrates peptide structure, electrostatic and short-range interactions, and charge regulation effects to model SBP adsorption onto silica. This coarse-grained approach effectively captures the dependence of adsorption on pH, salt concentration, and peptide concentration.
View Article and Find Full Text PDFJ Biosci Bioeng
September 2025
Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan.
Blood purification using immunoadsorbent columns is a therapeutic strategy for removing pathogenic autoantibodies in autoimmune diseases. Currently available columns have limitations: Trp/Phe columns offer cost-effectiveness and sterilizability, but lack antigen specificity and have limited capacity to remove diverse pathogenic autoantibodies; whereas Protein A/peptide/anti-human IgG columns target all antibodies, regardless of pathogenicity, limiting specificity, and often require sterile production due to low stability under sterilization conditions, except for peptide ligands. Full-length autoantigen-immobilized immunoadsorbent columns have great potential to specifically adsorb targeted autoantibodies, because autoantibodies recognize diverse epitopes that vary among individuals.
View Article and Find Full Text PDF