Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Single image dehazing is a challenging and ill-posed problem due to severe information degeneration of images captured in hazy conditions. Remarkable progresses have been achieved by deep-learning based image dehazing methods, where residual learning is commonly used to separate the hazy image into clear and haze components. However, the nature of low similarity between haze and clear components is commonly neglected, while the lack of constraint of contrastive peculiarity between the two components always restricts the performance of these approaches. To deal with these problems, we propose an end-to-end self-regularized network (TUSR-Net) which exploits the contrastive peculiarity of different components of the hazy image, i.e, self-regularization (SR). In specific, the hazy image is separated into clear and hazy components and constraint between different image components, i.e., self-regularization, is leveraged to pull the recovered clear image closer to groundtruth, which largely promotes the performance of image dehazing. Meanwhile, an effective triple unfolding framework combined with dual feature to pixel attention is proposed to intensify and fuse the intermediate information in feature, channel and pixel levels, respectively, thus features with better representational ability can be obtained. Our TUSR-Net achieves better trade-off between performance and parameter size with weight-sharing strategy and is much more flexible. Experiments on various benchmarking datasets demonstrate the superiority of our TUSR-Net over state-of-the-art single image dehazing methods.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TIP.2023.3234701 | DOI Listing |