98%
921
2 minutes
20
Training noise-robust deep neural networks (DNNs) in label noise scenario is a crucial task. In this paper, we first demonstrates that the DNNs learning with label noise exhibits over-fitting issue on noisy labels because of the DNNs is too confidence in its learning capacity. More significantly, however, it also potentially suffers from under-learning on samples with clean labels. DNNs essentially should pay more attention on the clean samples rather than the noisy samples. Inspired by the sample-weighting strategy, we propose a meta-probability weighting (MPW) algorithm which re-weights the output probability of DNNs to prevent DNNs from over-fitting to label noise and alleviate the under-learning issue on the clean sample. MPW conducts an approximation optimization to adaptively learn the probability weights from data under the supervision of a small clean dataset, and achieves iterative optimization between probability weights and network parameters via meta-learning paradigm. The ablation studies substantiate the effectiveness of MPW to prevent the deep neural networks from overfitting to label noise and improve the learning capacity on clean samples. Furthermore, MPW achieves competitive performance with other state-of-the-art methods on both synthetic and real-world noises.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/JBHI.2023.3237033 | DOI Listing |
J Chem Phys
September 2025
Department of Mathematics and Computer Science, Freie Universität, Berlin, Germany.
Coarse-grained (CG) molecular dynamics simulations extend the length and time scales of atomistic simulations by replacing groups of correlated atoms with CG beads. Machine-learned coarse-graining (MLCG) has recently emerged as a promising approach to construct highly accurate force fields for CG molecular dynamics. However, the calibration of MLCG force fields typically hinges on force matching, which demands extensive reference atomistic trajectories with corresponding force labels.
View Article and Find Full Text PDFAnal Chem
September 2025
State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong SAR 999077, China.
Mass spectrometry imaging (MSI) is a label-free technique that enables the visualization of the spatial distribution of thousands of ions within biosamples. Data denoising is the computational strategy aimed at enhancing the MSI data quality, providing an effective alternative to experimental methods. However, due to the complex noise pattern inherent in MSI data and the difficulty in obtaining ground truth from noise-free data, achieving reliable denoised images remains challenging.
View Article and Find Full Text PDFFront Digit Health
August 2025
Architecture Laboratory, Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan.
Background: Microwave Doppler sensors, capable of detecting minute physiological movements, enable the measurement of biometric information, such as walking patterns, heart rate, and respiration. Unlike fingerprint and facial recognition systems, they offer authentication without physical contact or privacy concerns. This study focuses on non-contact seismocardiography using microwave Doppler sensors and aims to apply this technology for biometric authentication.
View Article and Find Full Text PDFJ Acoust Soc Am
September 2025
Centre de Vision Numérique, CentraleSupélec, Université Paris-Saclay, Inria, Gif-Sur-Yvette, France.
Conventional techniques for underwater source localization have traditionally relied on optimization methods, matched-field processing, beamforming, and, more recently, deep learning. However, these methods often fall short to fully exploit the data correlation crucial for accurate source localization. This correlation can be effectively captured using graphs, which consider the spatial relationship among data points through edges.
View Article and Find Full Text PDFBiol Reprod
September 2025
Département des sciences animales, Faculté des sciences de l'agriculture et de l'alimentation, Université Laval, Québec, Qc, Canada.
Deep 3D imaging of oocytes shows several difficulties. Their large size, spherical shape causes depth-dependent artefactual shadow in the middle, resulting from refractive index mismatches induced by turbid organelles and lipid droplets. These mismatches lead to optical aberrations, increasing the laser spot size at the confocal pinhole plan and causing significant attenuation of fluorescence intensity making difficult to clearly image fine structures such as the transzonal projections (TZPs) connecting cumulus cells and the oocyte.
View Article and Find Full Text PDF