98%
921
2 minutes
20
The currently available nebulization devices have a slow aerosol flow and produce vapor with large microdrops. Improved devices that achieve higher airflow and produce smaller microdrops are needed to improve the clinical care of patients. To address this critical need, we developed a novel system for the molecular vaporization of liquids. This device vaporizes an active pharmacological substance dissolved in water, alcohol, or a mixture of water and alcohol using two energy sources at the same time: high-frequency ultrasound and thermal induction. Application of energy to a solution contained in the device's tank allows, within tens of seconds, for the vaporization of the solution itself, with the generation of a vapor consisting of microdrops of very small diameter (0.2-0.3 μm). In this article, we illustrate the technology used, the main verification tests performed, and the primary fields of application for this device. In particular, the advantages of both the aerosol delivery system and the administration system are highlighted.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10068108 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2023.e14673 | DOI Listing |
Nanomicro Lett
September 2025
Nanomaterials & System Lab, Major of Mechatronics Engineering, Faculty of Applied Energy System, Jeju National University, Jeju, 63243, Republic of Korea.
Wearable sensors integrated with deep learning techniques have the potential to revolutionize seamless human-machine interfaces for real-time health monitoring, clinical diagnosis, and robotic applications. Nevertheless, it remains a critical challenge to simultaneously achieve desirable mechanical and electrical performance along with biocompatibility, adhesion, self-healing, and environmental robustness with excellent sensing metrics. Herein, we report a multifunctional, anti-freezing, self-adhesive, and self-healable organogel pressure sensor composed of cobalt nanoparticle encapsulated nitrogen-doped carbon nanotubes (CoN CNT) embedded in a polyvinyl alcohol-gelatin (PVA/GLE) matrix.
View Article and Find Full Text PDFDalton Trans
September 2025
Sun Yat-Sen University, MOE Laboratory of Polymeric Composite and Functional Materials, School of Materials Science and Engineering, Guangzhou 510275, China.
The main bottleneck faced by traditional hydrogen production technology through water electrolysis lies in the high energy consumption of the anodic oxygen evolution reaction (OER). Combining the thermodynamically favorable ethanol oxidation reaction (EOR) with the hydrogen evolution reaction provides a promising route to reduce the energy consumption of hydrogen production and generate high value-added products. In this study, a facile method was developed for nickel oxyhydroxide (NiOOH) fabrication.
View Article and Find Full Text PDFChem Commun (Camb)
September 2025
MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, School of Chemistry, School of Chemical Engineering & Technology, IGCME, Sun Yat-Sen University, Guangzhou 510275, China.
Separation of ethanol-water azeotrope is extremely challenging. Here, we design and synthesize a new sulfate-pillared metal triazolate framework, which shows sieving-like separation of water/ethanol. A dynamic breakthrough verified the ultrahigh selectivity (145), and it could produce a record-breaking ethanol productivity (3.
View Article and Find Full Text PDFGen Physiol Biophys
September 2025
Faculty of Exact and Natural Sciences, I. Javakhishvili Tbilisi State University, Tbilisi, Georgia.
In this study, both pure and calcium-containing complex liposomes made from DPPC phospholipids were investigated using calorimetric and spectrophotometric methods. Liposomes were prepared using a new technology in both water and a 20% glycerol aqueous solution. Glycerol allows drug-containing DPPC liposomes to penetrate the dermis of the skin through the epidermis.
View Article and Find Full Text PDFTurkiye Parazitol Derg
September 2025
Manisa Celal Bayar University Faculty of Medicine, Department of Medical Parasitology, Manisa, Türkiye.
Objective: () (common juniper) is a plant that has been used for medicinal purposes for centuries. This study aims to evaluate the antiparasitic effects of ethanol, methanol, chloroform, and water extracts of fruits against , , , and
Methods: The antiparasitic activities of fruit extracts prepared at room temperature using the shaking maceration method were tested against using the ring stage survival test, and against , , and using the broth microdilution method.
Results: The chloroform extract of fruits was found to be effective on , , , and parasites at concentrations of 15, 10, 30 and 30 µg/mL, respectively.