A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Multi-level fusion network for mild cognitive impairment identification using multi-modal neuroimages. | LitMetric

Multi-level fusion network for mild cognitive impairment identification using multi-modal neuroimages.

Phys Med Biol

School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, People's Republic of China.

Published: April 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

. Mild cognitive impairment (MCI) is a precursor to Alzheimer's disease (AD) which is an irreversible progressive neurodegenerative disease and its early diagnosis and intervention are of great significance. Recently, many deep learning methods have demonstrated the advantages of multi-modal neuroimages in MCI identification task. However, previous studies frequently simply concatenate patch-level features for prediction without modeling the dependencies among local features. Also, many methods only focus on modality-sharable information or modality-specific features and ignore their incorporation. This work aims to address above-mentioned issues and construct a model for accurate MCI identification.. In this paper, we propose a multi-level fusion network for MCI identification using multi-modal neuroimages, which consists of local representation learning and dependency-aware global representation learning stages. Specifically, for each patient, we first extract multi-pair of patches from multiple same position in multi-modal neuroimages. After that, in the local representation learning stage, multiple dual-channel sub-networks, each of which consists of two modality-specific feature extraction branches and three sine-cosine fusion modules, are constructed to learn local features that preserve modality-sharable and modality specific representations simultaneously. In the dependency-aware global representation learning stage, we further capture long-range dependencies among local representations and integrate them into global ones for MCI identification.. Experiments on ADNI-1/ADNI-2 datasets demonstrate the superior performance of the proposed method in MCI identification tasks (Accuracy: 0.802, sensitivity: 0.821, specificity: 0.767 in MCI diagnosis task; accuracy: 0.849, sensitivity: 0.841, specificity: 0.856 in MCI conversion task) when compared with state-of-the-art methods. The proposed classification model has demonstrated a promising potential to predict MCI conversion and identify the disease-related regions in the brain.. We propose a multi-level fusion network for MCI identification using multi-modal neuroimage. The results on ADNI datasets have demonstrated its feasibility and superiority.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6560/accac8DOI Listing

Publication Analysis

Top Keywords

mci identification
24
multi-modal neuroimages
16
representation learning
16
multi-level fusion
12
fusion network
12
identification multi-modal
12
mci
10
mild cognitive
8
cognitive impairment
8
dependencies local
8

Similar Publications