Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Salient Object Detection has boomed in recent years and achieved impressive performance on regular-scale targets. However, existing methods encounter performance bottlenecks in processing objects with scale variation, especially extremely large- or small-scale objects with asymmetric segmentation requirements, since they are inefficient in obtaining more comprehensive receptive fields. With this issue in mind, this paper proposes a framework named BBRF for Boosting Broader Receptive Fields, which includes a Bilateral Extreme Stripping (BES) encoder, a Dynamic Complementary Attention Module (DCAM) and a Switch-Path Decoder (SPD) with a new boosting loss under the guidance of Loop Compensation Strategy (LCS). Specifically, we rethink the characteristics of the bilateral networks, and construct a BES encoder that separates semantics and details in an extreme way so as to get the broader receptive fields and obtain the ability to perceive extreme large- or small-scale objects. Then, the bilateral features generated by the proposed BES encoder can be dynamically filtered by the newly proposed DCAM. This module interactively provides spacial-wise and channel-wise dynamic attention weights for the semantic and detail branches of our BES encoder. Furthermore, we subsequently propose a Loop Compensation Strategy to boost the scale-specific features of multiple decision paths in SPD. These decision paths form a feature loop chain, which creates mutually compensating features under the supervision of boosting loss. Experiments on five benchmark datasets demonstrate that the proposed BBRF has a great advantage to cope with scale variation and can reduce the Mean Absolute Error over 20% compared with the state-of-the-art methods.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TIP.2022.3232209DOI Listing

Publication Analysis

Top Keywords

receptive fields
16
bes encoder
16
broader receptive
12
boosting broader
8
salient object
8
object detection
8
scale variation
8
large- small-scale
8
small-scale objects
8
boosting loss
8

Similar Publications

Lightweight hybrid Mamba2 for unsupervised medical image registration.

Med Phys

September 2025

School of Computer, Electronics and Information, Guangxi University, Nanning, China.

Background: Deformable medical image registration is a critical task in medical imaging-assisted diagnosis and treatment. In recent years, medical image registration methods based on deep learning have made significant success by leveraging prior knowledge, and the registration accuracy and computational efficiency have been greatly improved. Models based on Transformers have achieved better performance than convolutional neural network methods (ConvNet) in image registration.

View Article and Find Full Text PDF

Primate lateral intraparietal area (LIP) has been directly linked to perceptual categorization and decision-making. However, the intrinsic LIP circuitry that gives rise to the flexible generation of motor responses to sensory instruction remains unclear. Using retrograde tracers, we delineate two distinct operational compartments based on different intrinsic connectivity patterns of dorsal and ventral LIP.

View Article and Find Full Text PDF

In industrial scenarios, semantic segmentation of surface defects is vital for identifying, localizing, and delineating defects. However, new defect types constantly emerge with product iterations or process updates. Existing defect segmentation models lack incremental learning capabilities, and direct fine-tuning (FT) often leads to catastrophic forgetting.

View Article and Find Full Text PDF

In the visual cortices, receptive fields (RFs) are arranged in a gradient from small sizes in the center of the visual field to the largest sizes at the periphery. Using functional magnetic resonance imaging (fMRI) mapping of population RFs, we investigated RF adaptation in V1, V2, and V3 in patients after long-term photoreceptor degeneration affecting the central (Stargardt disease [STGD]) and peripheral (Retinitis Pigmentosa [RP]) regions of the retina. In controls, we temporarily limited the visual field to the central 10° to model peripheral loss.

View Article and Find Full Text PDF

Computer-aided diagnostic (CAD) systems for color fundus images play a critical role in the early detection of fundus diseases, including diabetes, hypertension, and cerebrovascular disorders. Although deep learning has substantially advanced automatic segmentation techniques in this field, several challenges persist, such as limited labeled datasets, significant structural variations in blood vessels, and persistent dataset discrepancies, which continue to hinder progress. These challenges lead to inconsistent segmentation performance, particularly for small vessels and branch regions.

View Article and Find Full Text PDF