Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Spinal cord injury is a complex environment, with many conflicting growth factors present at different times throughout the injury timeline. Delivery of multiple growth factors has received mixed results, highlighting a need to consider the timing of delivery for possibly antagonistic growth factors. Cell-mediated degradation of delivery vehicles for delayed release of growth factors offers an attractive way to exploit the highly active immune response in the spinal cord injury environment. In this study, growth factor-loaded gelatin microspheres (GMS) combined with methacrylated hyaluronic acid (MeHA) were electrospun to create GMS fibers (GMSF) for delayed release of growth factors (GFs). GMS were successfully combined with MeHA while electrospinning, with an average fiber diameter of 365 ± 10 nm and 44% ± 8% fiber alignment. GMSF with nerve growth factor (NGF) was tested on dissociated chick dorsal root ganglia cells. We further tested the effect of M1 macrophage-conditioned media (M1CM) to simulate macrophage invasion after spinal cord injury for cell-mediated degradation. We hypothesized that neurons grown on GMSF with loaded NGF would exhibit longer neurites in M1CM, showing a release of functional NGF, as compared with controls. GMSF in M1CM was significantly different from MeHA in serum-free media (SFM) and M0-conditioned media (M0CM), as well as GMSF in M0CM ( < 0.05). Moreover, GMSF + NGF in all media conditions were significantly different from MeHA in SFM and M0CM ( < 0.05). The goal of this study was to develop a biomaterial system where drug delivery is triggered by immune response, allowing for more control and longer exposure to encapsulated drugs. The spinal cord injury microenvironment is known to have a robust immune response, making this immune-medicated drug release system particularly significant for directed repair.

Download full-text PDF

Source
http://dx.doi.org/10.1089/ten.TEA.2022.0205DOI Listing

Publication Analysis

Top Keywords

growth factors
20
spinal cord
12
cord injury
12
growth
8
nerve growth
8
growth factor
8
gelatin microspheres
8
cell-mediated degradation
8
delayed release
8
release growth
8

Similar Publications

Objectives: Complement factor I (CFI) deficiency is a rare condition that can present with fulminant relapsing CNS autoinflammation. In this report, we highlight the utility of genetic testing in unexplained CNS autoinflammation.

Methods: This case report describes a young adult with partial CFI deficiency, presenting with acute hemorrhagic leukoencephalitis and longitudinally extensive transverse myelitis.

View Article and Find Full Text PDF

Objective: Aim: To evaluate clinical applicability of immune mediator's interleukin-16, immunoglobulin E along with eosinophil count in diagnosing COVID-19 and determining its severity.

Patients And Methods: Materials and Methods: Cross-sectional case-control study was conducted at Al-Najaf General Hospital, Najaf, Iraq between March and August 2024. 120 participants: 60 confirmed COVID-19 cases and 60 healthy controls which matched cases in terms of age and sex.

View Article and Find Full Text PDF

Tumor necrosis factor-alpha (TNF-α) is a cytokine involved in the immune-inflammatory response. It can induce an odontoblastic phenotype and enhance biomineralization in dental pulp mesenchymal stem cells but does not have the same effect on osteoblasts. The reasons for this differential response, despite the shared lineage of these cell types, are not yet clear.

View Article and Find Full Text PDF

Angiotensin II (Ang II) releases inflammatory mediators from several cell types. The objective of this study was to investigate the potential of Ang II to induce mRNA expression of inflammatory mediators in primary cultured fibroblast-like cells isolated from gingival and periodontal ligament tissues. A synergistic effect of co-treatment with Ang II and Interleukin-1β (IL1β) on the mRNA expression of inflammatory mediators was explored.

View Article and Find Full Text PDF

This study aimed to histomorphometrically evaluate the effect of guided bone regeneration (GBR) and two implant surfaces on the thickness and height of newly formed bone in dehiscence defects around titanium implants. Three premolars and the first bilateral molar were extracted from ten adult mongrel dogs, and 40 buccal bone dehiscences measuring 5 mm in height and 4 mm in width were created using a University of North Carolina (UNC) periodontal probe to confirm the dimensions. Forty implants were randomly assigned to one of four groups: oxidized implant surfaces (OIS, n = 10), turned/machined implant surfaces (TIS, n = 10), OIS + GBR (n = 10), and TIS + GBR (n = 10).

View Article and Find Full Text PDF