Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The volume of published academic research is growing rapidly and this new era of "big literature" poses new challenges to evidence synthesis, pushing traditional, manual methods of evidence synthesis to their limits. New technology developments, including machine learning, are likely to provide solutions to the problem of information overload and allow scaling of systematic maps to large and even vast literatures. In this paper, we outline how systematic maps lend themselves well to automation and computer-assistance. We believe that it is a major priority to consolidate efforts to develop and validate efficient, rigorous and robust applications of these novel technologies, ensuring the challenges of big literature do not prevent the future production of systematic maps.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8356330 | PMC |
http://dx.doi.org/10.1002/cl2.1129 | DOI Listing |