A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Estimating Uncertainty in Neural Networks for Cardiac MRI Segmentation: A Benchmark Study. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objective: Convolutional neural networks (CNNs) have demonstrated promise in automated cardiac magnetic resonance image segmentation. However, when using CNNs in a large real-world dataset, it is important to quantify segmentation uncertainty and identify segmentations which could be problematic. In this work, we performed a systematic study of Bayesian and non-Bayesian methods for estimating uncertainty in segmentation neural networks.

Methods: We evaluated Bayes by Backprop, Monte Carlo Dropout, Deep Ensembles, and Stochastic Segmentation Networks in terms of segmentation accuracy, probability calibration, uncertainty on out-of-distribution images, and segmentation quality control.

Results: We observed that Deep Ensembles outperformed the other methods except for images with heavy noise and blurring distortions. We showed that Bayes by Backprop is more robust to noise distortions while Stochastic Segmentation Networks are more resistant to blurring distortions. For segmentation quality control, we showed that segmentation uncertainty is correlated with segmentation accuracy for all the methods. With the incorporation of uncertainty estimates, we were able to reduce the percentage of poor segmentation to 5% by flagging 31-48% of the most uncertain segmentations for manual review, substantially lower than random review without using neural network uncertainty (reviewing 75-78% of all images).

Conclusion: This work provides a comprehensive evaluation of uncertainty estimation methods and showed that Deep Ensembles outperformed other methods in most cases.

Significance: Neural network uncertainty measures can help identify potentially inaccurate segmentations and alert users for manual review.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TBME.2022.3232730DOI Listing

Publication Analysis

Top Keywords

segmentation
12
deep ensembles
12
estimating uncertainty
8
neural networks
8
uncertainty
8
segmentation uncertainty
8
bayes backprop
8
stochastic segmentation
8
segmentation networks
8
segmentation accuracy
8

Similar Publications