Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
We build new material descriptors to predict the band gap and the work function of 2D materials by tree-based machine-learning models. The descriptor's construction is based on vectorizing property matrices and on empirical property function, leading to mixing features that require low-resource computations. Combined with database-based features, the mixing features significantly improve the training and prediction of the models. We find R[Formula: see text] greater than 0.9 and mean absolute errors (MAE) smaller than 0.23 eV both for the training and prediction. The highest R[Formula: see text] of 0.95, 0.98 and the smallest MAE of 0.16 eV and 0.10 eV were obtained by using extreme gradient boosting for the bandgap and work-function predictions, respectively. These metrics were greatly improved as compared to those of database features-based predictions. We also find that the hybrid features slightly reduce the overfitting despite a small scale of the dataset. The relevance of the descriptor-based method was assessed by predicting and comparing the electronic properties of several 2D materials belonging to new classes (oxides, nitrides, carbides) with those of conventional computations. Our work provides a guideline to efficiently engineer descriptors by using vectorized property matrices and hybrid features for predicting 2D materials properties via ensemble models.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10070413 | PMC |
http://dx.doi.org/10.1038/s41598-023-31928-7 | DOI Listing |