Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Nuclear magnetic resonance (NMR) is one of the most powerful analytical techniques. In order to obtain high-quality NMR spectra, a real-time Zangger-Sterk (ZS) pulse sequence is employed to collect low-quality pure shift NMR data with high efficiency. Then, a neural network named AC-ResNet and a loss function named SM-CDMANE are developed to train a network model. The model with excellent abilities of suppressing noise, reducing line widths, discerning peaks, and removing artifacts is utilized to process the acquired NMR data. The processed spectra with noise and artifact suppression and small line widths are ultraclean and high-resolution. Peaks overlapped heavily can be resolved. Weak peaks, even hidden in the noise, can be discerned from noise. Artifacts, even as high as spectral peaks, can be removed completely while not suppressing peaks. Eliminating perfectly noise and artifacts and smoothing baseline make spectra ultraclean. The proposed methodology would greatly promote various NMR applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.3c00455 | DOI Listing |