A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Deep Learning Methodology for Obtaining Ultraclean Pure Shift Proton Nuclear Magnetic Resonance Spectra. | LitMetric

Deep Learning Methodology for Obtaining Ultraclean Pure Shift Proton Nuclear Magnetic Resonance Spectra.

J Phys Chem Lett

Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, No. 422, Siming South Road, Siming District, Xiamen, Fujian 361005, People's Republic of China.

Published: April 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Nuclear magnetic resonance (NMR) is one of the most powerful analytical techniques. In order to obtain high-quality NMR spectra, a real-time Zangger-Sterk (ZS) pulse sequence is employed to collect low-quality pure shift NMR data with high efficiency. Then, a neural network named AC-ResNet and a loss function named SM-CDMANE are developed to train a network model. The model with excellent abilities of suppressing noise, reducing line widths, discerning peaks, and removing artifacts is utilized to process the acquired NMR data. The processed spectra with noise and artifact suppression and small line widths are ultraclean and high-resolution. Peaks overlapped heavily can be resolved. Weak peaks, even hidden in the noise, can be discerned from noise. Artifacts, even as high as spectral peaks, can be removed completely while not suppressing peaks. Eliminating perfectly noise and artifacts and smoothing baseline make spectra ultraclean. The proposed methodology would greatly promote various NMR applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpclett.3c00455DOI Listing

Publication Analysis

Top Keywords

pure shift
8
nuclear magnetic
8
magnetic resonance
8
nmr data
8
noise artifacts
8
nmr
5
noise
5
peaks
5
deep learning
4
learning methodology
4

Similar Publications