Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
It is well-known that mood and pain interact with each other, however individual-level variability in this relationship has been less well quantified than overall associations between low mood and pain. Here, we leverage the possibilities presented by mobile health data, in particular the "Cloudy with a Chance of Pain" study, which collected longitudinal data from the residents of the UK with chronic pain conditions. Participants used an App to record self-reported measures of factors including mood, pain and sleep quality. The richness of these data allows us to perform model-based clustering of the data as a mixture of Markov processes. Through this analysis we discover four endotypes with distinct patterns of co-evolution of mood and pain over time. The differences between endotypes are sufficiently large to play a role in clinical hypothesis generation for personalised treatments of comorbid pain and low mood.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10062665 | PMC |
http://dx.doi.org/10.1371/journal.pdig.0000204 | DOI Listing |