A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Statistical mechanics of biomolecular condensates via cavity methods. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Physical mechanisms of phase separation in living systems play key physiological roles and have recently been the focus of intensive studies. The strongly heterogeneous nature of such phenomena poses difficult modeling challenges that require going beyond mean-field approaches based on postulating a free energy landscape. The pathway we take here is to calculate the partition function starting from microscopic interactions by means of cavity methods, based on a tree approximation for the interaction graph. We illustrate them on the binary case and then apply them successfully to ternary systems, in which simpler one-factor approximations are proved inadequate. We demonstrate the agreement with lattice simulations and contrast our theory with coacervation experiments of associative de-mixing of nucleotides and poly-lysine. Different types of evidence are provided to support cavity methods as ideal tools for modeling biomolecular condensation, giving an optimal balance between the consideration of spatial aspects and fast computational results.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10040705PMC
http://dx.doi.org/10.1016/j.isci.2023.106300DOI Listing

Publication Analysis

Top Keywords

cavity methods
12
statistical mechanics
4
mechanics biomolecular
4
biomolecular condensates
4
condensates cavity
4
methods physical
4
physical mechanisms
4
mechanisms phase
4
phase separation
4
separation living
4

Similar Publications