Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Controlling the twist angle between double stacked van der Waals (vdW) crystals holds great promise for nanoscale light compression and manipulation in the mid-infrared (MIR) range. A lithography-free geometry has been proposed to mediate the coupling of phonon polaritons (PhPs) in double-layers of vdW α-MoO3. The anisotropic hyperbolic phonon polaritons (AHPhPs) are further hybridized by the anisotropic substrate environment of magneto-optic indium arsenide (InAs). The AHPhPs can be tuned by twisting the angle between the optical axes of the two separated layers and realize a topological transition from open to closed dispersion contours. Moreover, in the presence of external magnetic field, an alteration of the hybridization of PhPs will be met, which enable an efficient way for the control of light-matter interaction at nanoscale in the MIR region.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10054559 | PMC |
http://dx.doi.org/10.3390/mi14030648 | DOI Listing |