Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
This study provides experimental evidence regarding the mechanism of gallium nitride (GaN) selective-area growth (SAG) on a polished plateau-patterned sapphire substrate (PP-PSS), on which aluminum nitride (AlN) buffer layers are deposited under the same deposition conditions. The SAG of GaN was only observed on the plateau region of the PP-PSS, irrespective of the number of growth cycles. Indirect samples deposited on the bare c-plane substrate were prepared to determine the difference between the AlN buffer layers in the plateau region and silicon oxide (SiO2). The AlN buffer layer in the plateau region exhibited a higher surface energy, and its crystal orientation is indicated by AlN [001]. In contrast, regions other than the plateau region did not exhibit crystallinity and presented lower surface energies. The direct analysis results of PP-PSS using transmission electron microscopy (TEM) and electron backscattered diffraction (EBSD) are similar to the results of the indirect samples. Therefore, under the same conditions, the GaN SAG of the deposited layer is related to crystallinity, crystal orientation, and surface energy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10053046 | PMC |
http://dx.doi.org/10.3390/ma16062462 | DOI Listing |