98%
921
2 minutes
20
Defective DNA mismatch repair is one pathogenic pathway to colorectal cancer. It is characterised by microsatellite instability which provides a molecular biomarker for its detection. Clinical guidelines for universal testing of this biomarker are not met due to resource limitations; thus, there is interest in developing novel methods for its detection. Raman spectroscopy (RS) is an analytical tool able to interrogate the molecular vibrations of a sample to provide a unique biochemical fingerprint. The resulting datasets are complex and high-dimensional, making them an ideal candidate for deep learning, though this may be limited by small sample sizes. This study investigates the potential of using RS to distinguish between normal, microsatellite stable (MSS) and microsatellite unstable (MSI-H) adenocarcinoma in human colorectal samples and whether deep learning provides any benefit to this end over traditional machine learning models. A 1D convolutional neural network (CNN) was developed to discriminate between healthy, MSI-H and MSS in human tissue and compared to a principal component analysis-linear discriminant analysis (PCA-LDA) and a support vector machine (SVM) model. A nested cross-validation strategy was used to train 30 samples, 10 from each group, with a total of 1490 Raman spectra. The CNN achieved a sensitivity and specificity of 83% and 45% compared to PCA-LDA, which achieved a sensitivity and specificity of 82% and 51%, respectively. These are competitive with existing guidelines, despite the low sample size, speaking to the molecular discriminative power of RS combined with deep learning. A number of biochemical antecedents responsible for this discrimination are also explored, with Raman peaks associated with nucleic acids and collagen being implicated.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10046611 | PMC |
http://dx.doi.org/10.3390/cancers15061720 | DOI Listing |
Mol Divers
September 2025
Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, Nanjing, 211198, China.
Drug absorption significantly influences pharmacokinetics. Accurately predicting human oral bioavailability (HOB) is essential for optimizing drug candidates and improving clinical success rates. The traditional method based on experiment is a common way to obtain HOB, but the experimental method is time-consuming and costly.
View Article and Find Full Text PDFExp Brain Res
September 2025
School of Information Science and Technology, Yunnan Normal University, Kunming, 650500, China.
This study explores how differences in colors presented separately to each eye (binocular color differences) can be identified through EEG signals, a method of recording electrical activity from the brain. Four distinct levels of green-red color differences, defined in the CIELAB color space with constant luminance and chroma, are investigated in this study. Analysis of Event-Related Potentials (ERPs) revealed a significant decrease in the amplitude of the P300 component as binocular color differences increased, suggesting a measurable brain response to these differences.
View Article and Find Full Text PDFPhys Eng Sci Med
September 2025
Department of Radiology, Otaru General Hospital, Otaru, Hokkaido, Japan.
In lung CT imaging, motion artifacts caused by cardiac motion and respiration are common. Recently, CLEAR Motion, a deep learning-based reconstruction method that applies motion correction technology, has been developed. This study aims to quantitatively evaluate the clinical usefulness of CLEAR Motion.
View Article and Find Full Text PDFChaos
September 2025
School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
Although many real-world time series are complex, developing methods that can learn from their behavior effectively enough to enable reliable forecasting remains challenging. Recently, several machine-learning approaches have shown promise in addressing this problem. In particular, the echo state network (ESN) architecture, a type of recurrent neural network where neurons are randomly connected and only the read-out layer is trained, has been proposed as suitable for many-step-ahead forecasting tasks.
View Article and Find Full Text PDFRadiol Artif Intell
September 2025
Department of Radiology, Shanghai Jiao Tong University Medical School Affiliated Ruijin Hospital, No. 197 Ruijin Er Road, Shanghai 200025, China.
Purpose To assess the effectiveness of an explainable deep learning (DL) model, developed using multiparametric MRI (mpMRI) features, in improving diagnostic accuracy and efficiency of radiologists for classification of focal liver lesions (FLLs). Materials and Methods FLLs ≥ 1 cm in diameter at mpMRI were included in the study. nn-Unet and Liver Imaging Feature Transformer (LIFT) models were developed using retrospective data from one hospital (January 2018-August 2023).
View Article and Find Full Text PDF