A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Optimization System Based on Convolutional Neural Network and Internet of Medical Things for Early Diagnosis of Lung Cancer. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Recently, deep learning and the Internet of Things (IoT) have been widely used in the healthcare monitoring system for decision making. Disease prediction is one of the emerging applications in current practices. In the method described in this paper, lung cancer prediction is implemented using deep learning and IoT, which is a challenging task in computer-aided diagnosis (CAD). Because lung cancer is a dangerous medical disease that must be identified at a higher detection rate, disease-related information is obtained from IoT medical devices and transmitted to the server. The medical data are then processed and classified into two categories, benign and malignant, using a multi-layer CNN (ML-CNN) model. In addition, a particle swarm optimization method is used to improve the learning ability (loss and accuracy). This step uses medical data (CT scan and sensor information) based on the Internet of Medical Things (IoMT). For this purpose, sensor information and image information from IoMT devices and sensors are gathered, and then classification actions are taken. The performance of the proposed technique is compared with well-known existing methods, such as the Support Vector Machine (SVM), probabilistic neural network (PNN), and conventional CNN, in terms of accuracy, precision, sensitivity, specificity, F-score, and computation time. For this purpose, two lung datasets were tested to evaluate the performance: Lung Image Database Consortium (LIDC) and Linear Imaging and Self-Scanning Sensor (LISS) datasets. Compared to alternative methods, the trial outcomes showed that the suggested technique has the potential to help the radiologist make an accurate and efficient early lung cancer diagnosis. The performance of the proposed ML-CNN was analyzed using Python, where the accuracy (2.5-10.5%) was high when compared to the number of instances, precision (2.3-9.5%) was high when compared to the number of instances, sensitivity (2.4-12.5%) was high when compared to several instances, the F-score (2-30%) was high when compared to the number of cases, the error rate (0.7-11.5%) was low compared to the number of cases, and the computation time (170 ms to 400 ms) was low compared to how many cases were computed for the proposed work, including previous known methods. The proposed ML-CNN architecture shows that this technique outperforms previous works.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10045046PMC
http://dx.doi.org/10.3390/bioengineering10030320DOI Listing

Publication Analysis

Top Keywords

lung cancer
16
high compared
16
compared number
16
neural network
8
internet medical
8
medical things
8
deep learning
8
medical data
8
performance proposed
8
compared
8

Similar Publications