98%
921
2 minutes
20
Metabolic homeostasis balances the production and consumption of energetic molecules to maintain active, healthy cells. Cellular stress, which disrupts metabolism and leads to the loss of cellular homeostasis, is important in age-related diseases. We focus here on the role of organelle dysfunction in age-related diseases, including the roles of energy deficiencies, mitochondrial dysfunction, endoplasmic reticulum (ER) stress, changes in metabolic flux in aging (e.g., Ca and nicotinamide adenine dinucleotide), and alterations in the endoplasmic reticulum-mitochondria contact sites that regulate the trafficking of metabolites. Tools for single-cell resolution of metabolite pools and metabolic flux in animal models of aging and age-related diseases are urgently needed. High-resolution mass spectrometry imaging (MSI) provides a revolutionary approach for capturing the metabolic states of individual cells and cellular interactions without the dissociation of tissues. mass spectrometry imaging can be a powerful tool to elucidate the role of stress-induced cellular dysfunction in aging.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10032471 | PMC |
http://dx.doi.org/10.3389/fmolb.2023.906606 | DOI Listing |
Nanoscale
September 2025
School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh 221005, India.
Early-stage cancer diagnosis is considered a grand challenge, and even though advanced analytical assays have been established through molecular biology techniques, there are still clinical limitations. For example, low concentration of target biomarkers at early stages of cancer, background values from the healthy cells, individual variation, and factors like DNA mutations, remain the limiting factor in early cancer detection. Volatile organic compound (VOC) biomarkers in exhaled breath are produced during cancer cell metabolism, and therefore may present a promising way to diagnose cancer at the early stage since they can be detected both rapidly and non-invasively.
View Article and Find Full Text PDFClin Mol Hepatol
September 2025
Department of Endoscopy, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, China.
Background/aims: Endoplasmic reticulum (ER) stress in hepatocytes plays a causative role in alcohol-associated liver disease (ALD). The incomplete inhibition of ER stress by targeting canonical ER stress sensor proteins suggests the existence of noncanonical ER stress pathways in ALD pathology. This study aimed to delineate the role of RAB25 in ALD and its regulatory mechanism in noncanonical ER stress pathways.
View Article and Find Full Text PDFBMB Rep
September 2025
Medical Innovation Technology Inc. (MEDINNO Inc.), Seoul 08517; Department of Anatomy & Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419; Stem Cell and Regenerative Medicine Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul 06351; Department of Health
The adult human neural stem cell (ahNSC)-conditioned medium (CM) contains various secreted factors that promote tissue repair and neuroprotection. This study aimed to identify the key secreted proteins in ahNSC-CM and investigate the role of tissue inhibitor of metalloproteinases-1 (TIMP-1) in wound healing, angiogenesis, and neuroprotection against oxygenglucose deprivation. Cytokine array and liquid chromatography- tandem mass spectrometry analysis of ahNSC-CM revealed that monocyte chemoattractant protein-1 (MCP-1) and TIMP-1 were highly abundant.
View Article and Find Full Text PDFInsect Sci
September 2025
CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China.
Agarwood trees (Aquilaria spp.) are widely cultivated in tropical Asia for their valuable resin. The defoliator moth Heortia vitessoides Moore (Lepidoptera: Crambidae) is a devastating pest that significantly limits the productivity of agarwood plantations.
View Article and Find Full Text PDFInt J Toxicol
September 2025
Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria.
Polyethylene glycols (PEGs) are amphiphilic polymers that are used extensively in consumer products and PEGylated biotherapeutics. Although PEGs are considered biologically inert with a low toxicity, anti-PEG antibodies have been detected in patients receiving treatment with PEGylated biotherapeutics as well as in healthy individuals. Despite continual exposure in daily life, the prevalence of PEGs within the general population remains unclear.
View Article and Find Full Text PDF