Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

J-domain protein (JDP) molecular chaperones have emerged as central players that maintain a healthy proteome. The diverse members of the JDP family function as monomers/dimers and a small subset assemble into micron-sized oligomers. The oligomeric JDP members have eluded structural characterization due to their low-complexity, intrinsically disordered middle domains. This in turn, obscures the biological significance of these larger oligomers in protein folding processes. Here, we identified a short, aromatic motif within DNAJB8, that drives self-assembly through pi-pi stacking and determined its X-ray structure. We show that mutations in the motif disrupt DNAJB8 oligomerization in vitro and in cells. DNAJB8 variants that are unable to assemble bind to misfolded tau seeds more specifically and retain capacity to reduce protein aggregation in vitro and in cells. We propose a new model for DNAJB8 function in which the sequences in the low-complexity domains play distinct roles in assembly and substrate activity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10028812PMC
http://dx.doi.org/10.1101/2023.03.06.531355DOI Listing

Publication Analysis

Top Keywords

dnajb8 oligomerization
8
substrate activity
8
vitro cells
8
dnajb8
5
oligomerization mediated
4
mediated aromatic-rich
4
aromatic-rich motif
4
motif dispensable
4
dispensable substrate
4
activity j-domain
4

Similar Publications

DNAJB8 oligomerization is mediated by an aromatic-rich motif that is dispensable for substrate activity.

Structure

June 2024

Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA. Electronic address: lukasz.joachimia

J-domain protein (JDP) molecular chaperones have emerged as central players that maintain a healthy proteome. The diverse members of the JDP family function as monomers/dimers and a small subset assemble into micron-sized oligomers. The oligomeric JDP members have eluded structural characterization due to their low-complexity, intrinsically disordered middle domains.

View Article and Find Full Text PDF

J-domain protein (JDP) molecular chaperones have emerged as central players that maintain a healthy proteome. The diverse members of the JDP family function as monomers/dimers and a small subset assemble into micron-sized oligomers. The oligomeric JDP members have eluded structural characterization due to their low-complexity, intrinsically disordered middle domains.

View Article and Find Full Text PDF

The Hsp40/Hsp70 chaperone families combine versatile folding capacity with high substrate specificity, which is mainly facilitated by Hsp40s. The structure and function of many Hsp40s remain poorly understood, particularly oligomeric Hsp40s that suppress protein aggregation. Here, we used a combination of biochemical and structural approaches to shed light on the domain interactions of the Hsp40 DnaJB8, and how they may influence recruitment of partner Hsp70s.

View Article and Find Full Text PDF

Misfolding and aggregation are associated with cytotoxicity in several protein folding diseases. A large network of molecular chaperones ensures protein quality control. Here, we show that within the Hsp70, Hsp110, and Hsp40 (DNAJ) chaperone families, members of a subclass of the DNAJB family (particularly DNAJB6b and DNAJB8) are superior suppressors of aggregation and toxicity of disease-associated polyglutamine proteins.

View Article and Find Full Text PDF