Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Fluorescent genetically encoded calcium indicators have contributed greatly to our understanding of neural dynamics from the level of individual neurons to entire brain circuits. However, neural responses may vary due to prior experience, internal states, or stochastic factors, thus generating the need for methods that can assess neural function across many individuals at once. Whereas most recording techniques examine a single animal at a time, we describe the use of wide-field microscopy to scale up neuronal recordings to dozens of Caenorhabditis elegans or other sub-millimeter-scale organisms at once. Open-source hardware and software allow great flexibility in programming fully automated experiments that control the intensity and timing of various stimulus types, including chemical, optical, mechanical, thermal, and electromagnetic stimuli. In particular, microfluidic flow devices provide precise, repeatable, and quantitative control of chemosensory stimuli with sub-second time resolution. The NeuroTracker semi-automated data analysis pipeline then extracts individual and population-wide neural responses to uncover functional changes in neural excitability and dynamics. This paper presents examples of measuring neuronal adaptation, temporal inhibition, and stimulus crosstalk. These techniques increase the precision and repeatability of stimulation, allow the exploration of population variability, and are generalizable to other dynamic fluorescent signals in small biosystems from cells and organoids to whole organisms and plants.

Download full-text PDF

Source
http://dx.doi.org/10.3791/65042DOI Listing

Publication Analysis

Top Keywords

neural responses
8
neural
5
automated multimodal
4
multimodal stimulation
4
stimulation simultaneous
4
simultaneous neuronal
4
neuronal recording
4
recording multiple
4
multiple small
4
small organisms
4

Similar Publications

The human auditory system must distinguish relevant sounds from noise. Severe hearing loss can be treated with cochlear implants (CIs), but how the brain adapts to electrical hearing remains unclear. This study examined adaptation to unilateral CI use in the first and seventh months after CI activation using speech comprehension measures and electroencephalography recordings, both during passive listening and an active spatial listening task.

View Article and Find Full Text PDF

This study explores how differences in colors presented separately to each eye (binocular color differences) can be identified through EEG signals, a method of recording electrical activity from the brain. Four distinct levels of green-red color differences, defined in the CIELAB color space with constant luminance and chroma, are investigated in this study. Analysis of Event-Related Potentials (ERPs) revealed a significant decrease in the amplitude of the P300 component as binocular color differences increased, suggesting a measurable brain response to these differences.

View Article and Find Full Text PDF

Background: Ovarian cancer (OC) remains the most lethal gynecological malignancy, largely due to its late-stage diagnosis and nonspecific early symptoms. Advances in biomarker identification and machine learning offer promising avenues for improving early detection and prognosis. This review evaluates the role of biomarker-driven ML models in enhancing the early detection, risk stratification, and treatment planning of OC.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) impairs attention and executive function, often through disrupted coordination between cognitive and autonomic systems. While electroencephalography (EEG) and pupillometry are widely used to assess neural and autonomic responses independently, little is known about how these systems interact in TBI. Understanding their coordination is essential to identify compensatory mechanisms that may support attention under conditions of neural inefficiency.

View Article and Find Full Text PDF

Goal-directed behavior requires adjusting cognitive control, both in preparation for and in reaction to conflict. Theta oscillations and population activity in dorsomedial prefrontal cortex (dmPFC) and dorsolateral PFC (dlPFC) are known to support reactive control. Here, we investigated their role in proactive control using human intracranial electroencephalogram (EEG) recordings during a Stroop task that manipulated conflict expectations.

View Article and Find Full Text PDF