A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Tailoring the whole-cell sensing spectrum with cyborgian redox machinery. | LitMetric

Tailoring the whole-cell sensing spectrum with cyborgian redox machinery.

Anal Chim Acta

Biofuels Institute, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Emergency Management & School of Environment and Safety Engineering, Zhenjiang, 212013, Jiangsu Province, China. Electronic address:

Published: April 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Whole-cell biosensors are an important class of analytical tools that offer the advantages of low cost, facile operation, and unique reproduction/regeneration ability. However, it has always been quite challenging to expand the sensing spectrum of the host. Here, a new approach to extend the cell sensing spectrum with biomineralized nanoparticles is developed. The nano-biohybrid design comprise biomineralized FeS nanoparticles firmly anchored onto the bacterium, Shewanella oneidensis MR-1, wherein the nanoparticles are wired to the cellular electron transfer machinery (MtrCAB/OmcA) of the bacterium, forming an artificial cyborgian redox machinery consisting of FeS-MtrCAB/OmcA-FccA. Strikingly, with this cyborgian redox machinery, the sensing spectrum of FeS hybridized S. oneidensis MR-1 cell is successfully expanded to enable whole-cell electrochemical detection of Vitamin B12, while an unhybridized native cell is incapable of sensing. This proof-of-concept nano-biohybrid design offers a new perspective on manipulating the microbial toolkit for an expanded sensing spectrum in whole-cell biosensors.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aca.2023.341046DOI Listing

Publication Analysis

Top Keywords

sensing spectrum
20
cyborgian redox
12
redox machinery
12
whole-cell biosensors
8
nano-biohybrid design
8
sensing
6
spectrum
5
tailoring whole-cell
4
whole-cell sensing
4
spectrum cyborgian
4

Similar Publications