Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Introduction: Antimicrobial resistance (AMR) is one of the greatest threats to animal and public health. Clostridioides (prev. Clostridium) difficile is a major burden to healthcare and a relevant AMR gene reservoir. Despite the known importance of AMR in C. difficile epidemiology and treatment, antimicrobial susceptibility testing for this pathogen is still based on the determination of the minimal inhibitory concentration (MIC) by the agar dilution method, which is technically demanding and labor-intensive. In this study, the disk diffusion method was used to evaluate the susceptibility of C. difficile to erythromycin, rifampicin, and tetracycline.

Material And Methods: A total of 155 isolates isolated between 2011 and 2022 from humans and animals in Brazil were simultaneously tested using the disk diffusion method and the epsilometer test (Etest) for these three antimicrobials on Brucella blood agar supplemented with vitamin K and hemin.

Results: The results suggest that disk diffusion can be an interesting routine tool to identify erythromycin- and rifampicin-resistant C. difficile isolates (≥20 mm cut-off) and wild type (WT) strains (≥28 mm). However, the disk diffusion protocol tested in this study does not seem suitable for tetracycline because of the common misclassification of resistant strains.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.anaerobe.2023.102720DOI Listing

Publication Analysis

Top Keywords

disk diffusion
20
diffusion method
12
clostridioides prev
8
prev clostridium
8
clostridium difficile
8
diffusion
5
evaluation disk
4
method
4
method testing
4
testing rifampicin
4

Similar Publications

Fluoroquinolone resistance in , particularly uropathogenic (UPEC), is a growing concern worldwide. This study investigates the association between mutations in the and genes and fluoroquinolone resistance in UPEC isolates from Urine samples in Iran. In total, 150 UPEC isolates were collected, and then, 12 ciprofloxacin-resistant isolates were selected for molecular analysis.

View Article and Find Full Text PDF

Background And Aim: The global rise of multidrug-resistant (MDR) poses a serious threat to human and animal health. Close proximity between humans and domestic animals may facilitate zoonotic transmission of MDR strains, underscoring the need for integrated surveillance strategies. This study aimed to investigate the genetic diversity, resistance mechanisms, and virulence gene profiles of isolates from domestic animals and humans in Mato Grosso, Brazil, within the One Health framework.

View Article and Find Full Text PDF

Characterization, photocatalysis, antimicrobial and antioxidant activities of manganese oxide nanoparticles green synthesis using seed extract.

Int J Phytoremediation

September 2025

Innovative Food Technologies Development Application and Research Center, Gölköy Campus Bolu, Bioenvironment and Green Synthesis Research Group, Bolu Abant İzzet Baysal University, Bolu, Türkiye.

This study presents an eco-friendly approach for the green synthesis of manganese oxide nanoparticles (MnONPs) using () (einkorn wheat) seed extract as a reducing and stabilizing agent. The synthesized MnONPs were characterized by UV-Vis, XRD, FTIR, SEM-EDX, BET, and zeta potential analyses, which confirmed their crystalline nature, spherical morphology, and mesoporous structure with a surface area of 41.50 m/g.

View Article and Find Full Text PDF

Phosphorylated structural analogs of Benzalkonium Chloride-diisopropoxyphosphorylmethane (dimethyldodecylammonium) bromide 1 (phosphorylated quaternary ammonium salt) and isopropoxyphosphorylmethane (dimethylalkylammonium) 2 (phosphorylated betaine) were synthesized. The structure of compound 1 was confirmed by single crystal X-ray diffraction study. The antibacterial, antifungal, and ecotoxicological profiles of the synthesized compounds were evaluated against aquatic organisms and flowering plants.

View Article and Find Full Text PDF

Simulations in three dimensions and time provide guidance on implantable, electroenzymatic glutamate sensor design; relative placement in planar sensor arrays; feasibility of sensing synaptic release events; and interpretation of sensor data. Electroenzymatic sensors based on the immobilization of oxidases on microelectrodes have proven valuable for the monitoring of neurotransmitter signaling in deep brain structures; however, the complex extracellular milieu featuring slow diffusive mass transport makes rational sensor design and data interpretation challenging. Simulations show that miniaturization of the disk-shaped device size below a radius of ∼25 μm improves sensitivity, spatial resolution, and the accuracy of glutamate concentration measurements based on calibration factors determined .

View Article and Find Full Text PDF