A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Distributions of the Wigner reaction matrix for microwave networks with symplectic symmetry in the presence of absorption. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We report on experimental studies of the distribution of the reflection coefficients, and the imaginary and real parts of Wigner's reaction (K) matrix employing open microwave networks with symplectic symmetry and varying size of absorption. The results are compared to analytical predictions derived for the single-channel scattering case within the framework of random-matrix theory (RMT). Furthermore, we performed Monte Carlo simulations based on the Heidelberg approach for the scattering (S) and K matrix of open quantum-chaotic systems and the two-point correlation function of the S-matrix elements. The analytical results and the Monte Carlo simulations depend on the size of absorption. To verify them, we performed experiments with microwave networks for various absorption strengths. We show that deviations from RMT predictions observed in the spectral properties of the corresponding closed quantum graph and attributed to the presence of nonuniversal short periodic orbits does not have any visible effects on the distributions of the reflection coefficients and the K and S matrices associated with the corresponding open quantum graph.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.107.024203DOI Listing

Publication Analysis

Top Keywords

microwave networks
12
reaction matrix
8
networks symplectic
8
symplectic symmetry
8
reflection coefficients
8
size absorption
8
monte carlo
8
carlo simulations
8
quantum graph
8
distributions wigner
4

Similar Publications