98%
921
2 minutes
20
Genome-wide association studies (GWASs) have repeatedly reported multiple non-coding single-nucleotide polymorphisms (SNPs) at 2p14 associated with rheumatoid arthritis (RA), but their functional roles in the pathological mechanisms of RA remain to be explored. In this study, we integrated a series of bioinformatics and functional experiments and identified three intronic RA SNPs (rs1876518, rs268131, and rs2576923) within active enhancers that can regulate the expression of SPRED2 directly. At the same time, SPRED2 and ACTR2 influence each other as a positive feedback signal amplifier to strengthen the protective role in RA by inhibiting the migration and invasion of rheumatoid fibroblast-like synoviocytes (FLSs). In particular, the transcription factor CEBPB preferentially binds to the rs1876518-T allele to increase the expression of SPRED2 in FLSs. Our findings decipher the molecular mechanisms behind the GWAS signals at 2p14 for RA and emphasize SPRED2 as a potential candidate gene for RA, providing a potential target and direction for precise treatment of RA.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10119143 | PMC |
http://dx.doi.org/10.1016/j.ajhg.2023.02.012 | DOI Listing |
Am J Hum Genet
April 2023
Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, P.R. China. Electronic address:
Mol Vis
June 2004
Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India.
Purpose: To report the linkage analysis of retinitis pigmentosa (RP) in an Indian family.
Methods: Individuals were examined for symptoms of retinitis pigmentosa and their blood samples were withdrawn for genetic analysis. The disorder was tested for linkage to known 14 adRP and 22 arRP loci using microsatellite markers.