98%
921
2 minutes
20
Lumen development is a crucial phase in tubulogenesis, although its molecular mechanisms are largely unknown. In this study, we discovered an ELMO domain-containing 3 (ELMOD3), which belongs to ADP-ribosylation factor GTPase-activating protein family, was necessary to form the notochord lumen in larvae We demonstrated that ELMOD3 interacted with lipid raft protein Flotillin2 and regulated its subcellular localization. The loss-of-function of Flotillin2 prevented notochord lumen formation. Furthermore, we found that ELMOD3 also interacted with Rab1A, which is the regulatory GTPase for vesicle trafficking and located at the notochord cell surface. Rab1A mutations arrested the lumen formation, phenocopying the loss-of-function of ELMOD3 and Flotillin2. Our findings further suggested that Rab1A interactions influenced Flotillin2 localization. We thus identified a unique pathway in which ELMOD3 interacted with Rab1A, which controlled the Flotillin2-mediated vesicle trafficking from cytoplasm to apical membrane, required for notochord lumen formation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10014252 | PMC |
http://dx.doi.org/10.1098/rsob.220367 | DOI Listing |
J Vis Exp
August 2025
Institut de recherches cliniques de Montréal (IRCM); Programmes de biologie moléculaire, Université de Montréal; Département de Médecine, Université de Montréal;
Embryonic tissue growth and patterning are largely controlled by signals exchanged locally between cell populations within the tissues themselves. Cytonemes are a type of signaling filopodia first identified in Drosophila that connect and mediate exchange between signal-producing and signal-receiving cells. In the developing Drosophila wing imaginal disc, cytonemes are involved in signal exchange between distinct populations of cells within the disc proper (DP) epithelium, which will form the adult wing, as well as between DP cells and cells in adjacent disc-associated tissues.
View Article and Find Full Text PDFJ Extracell Vesicles
September 2025
IRSD, Université de Toulouse, INSERM, INRAE, ENVT, Toulouse, France.
Outer membrane vesicles (OMVs) are nanosized vesicles naturally secreted by Gram-negative bacteria and represent a promising platform for vaccine development. OMVs possess inherent immunostimulatory properties due to the presence of pathogen-associated molecular patterns (PAMPs), providing self-adjuvanting capabilities and the ability to elicit both innate and adaptive immune responses. This review outlines the advantages of OMVs over traditional vaccine strategies, including their safety, modularity, and the potential for genetic engineering to enable targeted antigen delivery.
View Article and Find Full Text PDFFASEB J
September 2025
State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
Restenosis following endovascular intervention in lower extremity arterial disease contributes to significant morbidity and mortality. This study investigates the role of formylpeptide receptor 2 (FPR2) in neointimal hyperplasia and evaluates the therapeutic potential of the selective FPR2 agonist BMS-986235 in mitigating restenosis. FPR2 expression was significantly reduced in the popliteal and anterior tibial arteries of male amputees with restenosis compared to healthy controls.
View Article and Find Full Text PDFAnn Vasc Surg
September 2025
Interventional Radiology, Cleveland Clinic, Cleveland, OH, USA. Electronic address:
Objectives: As a two-dimensional modality, venography has limitations in its capacity to measure lumen caliber and to assess stenotic disease accurately. This has implications in the management of end-stage renal-disease (ESRD) patients "no-option" candidates access for arteriovenous fistula (AVF) or graft (AVG) creation secondary to high risk of vascular access failure. The incremental diagnostic and clinical impact of intravascular ultrasound (IVUS) was quantified in this tunneled dialysis catheter dependent ESRD cohort.
View Article and Find Full Text PDFAggregates of the protein α-synuclein may initially form in the gut before propagating to the brain in Parkinson's disease. Indeed, our prior work supports that enteroendocrine cells, specialized intestinal epithelial cells, could play a key role in the development of this disease. Enteroendocrine cells natively express α-synuclein and synapse with enteric neurons as well as the vagus nerve.
View Article and Find Full Text PDF