Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Purpose: Assessment of glaucomatous damage in animal models is facilitated by rapid and accurate quantification of retinal ganglion cell (RGC) axonal loss and morphologic change. However, manual assessment is extremely time- and labor-intensive. Here, we developed AxoNet 2.0, an automated deep learning (DL) tool that (i) counts normal-appearing RGC axons and (ii) quantifies their morphometry from light micrographs.
Methods: A DL algorithm was trained to segment the axoplasm and myelin sheath of normal-appearing axons using manually-annotated rat optic nerve (ON) cross-sectional micrographs. Performance was quantified by various metrics (e.g., soft-Dice coefficient between predicted and ground-truth segmentations). We also quantified axon counts, axon density, and axon size distributions between hypertensive and control eyes and compared to literature reports.
Results: AxoNet 2.0 performed very well when compared to manual annotations of rat ON (R2 = 0.92 for automated vs. manual counts, soft-Dice coefficient = 0.81 ± 0.02, mean absolute percentage error in axonal morphometric outcomes < 15%). AxoNet 2.0 also showed promise for generalization, performing well on other animal models (R2 = 0.97 between automated versus manual counts for mice and 0.98 for non-human primates). As expected, the algorithm detected decreased in axon density in hypertensive rat eyes (P ≪ 0.001) with preferential loss of large axons (P < 0.001).
Conclusions: AxoNet 2.0 provides a fast and nonsubjective tool to quantify both RGC axon counts and morphological features, thus assisting with assessing axonal damage in animal models of glaucomatous optic neuropathy.
Translational Relevance: This deep learning approach will increase rigor of basic science studies designed to investigate RGC axon protection and regeneration.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10020950 | PMC |
http://dx.doi.org/10.1167/tvst.12.3.9 | DOI Listing |