Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Non-alcoholic fatty liver disease (NAFLD) and Type 2 diabetes mellitus (T2DM) often coexist and drive detrimental effects in a synergistic manner. This study was designed to understand the changes in circulating lipid and lipoprotein metabolism in patients with T2DM with or without NAFLD. Four hundred thirty-four T2DM patients aged 18-60 years were included in this study. Fatty liver was assessed by FibroScan. The comprehensive metabolic lipid profiling of serum samples was assessed by using high-throughput proton NMR metabolomics. Our data revealed a significant association between steatosis and serum total lipids in VLDL and LDL lipoprotein subclasses, while total lipids in HDL subclasses were negatively associated. A significant positive association was found between steatosis and concentration of lipids, phospholipids, cholesterol, and triglycerides in VLDL and LDL subclasses, while HDL subclasses were negatively associated. Furthermore, a significant, association was observed between fibrosis and concentrations of lipids, phospholipids, cholesterol, and triglycerides in very small VLDL, large, and very large HDL subclasses. Subgroup analysis revealed a decrease in the concentrations of lipids, phospholipids, cholesterol, and other lipid biomolecules in patients using antilipemic medications. The metabolomics results provide evidence that patients with T2DM with higher steatosis grades have altered lipid metabolomics compared to patients without steatosis. Increased lipid, phospholipids, cholesterol, and triglycerides concentration of VLDL and LDL subclasses are associated with steatosis in patients with T2DM.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9999296PMC
http://dx.doi.org/10.3389/fmolb.2023.1030661DOI Listing

Publication Analysis

Top Keywords

phospholipids cholesterol
16
fatty liver
12
patients t2dm
12
vldl ldl
12
hdl subclasses
12
lipids phospholipids
12
cholesterol triglycerides
12
type diabetes
8
non-alcoholic fatty
8
liver disease
8

Similar Publications

Evaluation of the effects of bovine lactoferrin on the membrane of human erythrocytes.

Biochim Biophys Acta Biomembr

September 2025

Laboratório de Bioquímica Celular, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindu, Divinópolis, MG, Brazil. Electronic address:

Lactoferrin (Lf) is an iron-binding glycoprotein involved in various biological functions, including iron metabolism and immune response. Bovine lactoferrin (bLf) has gained attention due to its potential therapeutic applications. This study investigates the effects of bLf on human erythrocyte membranes, focusing on Na,K-ATPase (NKA) modulation.

View Article and Find Full Text PDF

Alteration in hippocampal mitochondria ultrastructure and cholesterol accumulation linked to mitochondrial dysfunction in the valproic acid rat model of autism spectrum disorders.

Psychopharmacology (Berl)

September 2025

Instituto de Biología Celular y Neurociencias "Prof. De Robertis" (IBCN), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina.

Rationale: Autism spectrum disorders (ASD) are a group of neurodevelopmental and multifactorial conditions with cognitive manifestations. The valproic acid (VPA) rat model is a well-validated model that successfully reproduces the behavioral and neuroanatomical alterations of ASD. Previous studies found atypical brain connectivity and metabolic patterns in VPA animals: local glucose hypermetabolism in the prefrontal cortex, with no metabolic changes in the hippocampus.

View Article and Find Full Text PDF

Single-Cell Membrane Molecular Cartography Enabled by Nanoengineered VUV-LDI Mass Spectrometry Imaging.

Anal Chem

September 2025

State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.

Deciphering the multicomponent of cell membranes at the single-cell level is critical for understanding pathological mechanisms such as tumor metastasis, yet remains technically daunting due to the membrane's nanoscale thickness and ultralow molecular abundance. Here, we introduce a surface-assisted vacuum ultraviolet laser desorption-ionization mass spectrometry imaging (SAVUVDI-MSI) platform that overcomes long-standing challenges of cytoplasmic interference and insufficient sensitivity. Leveraging the nanoscale depth profiling capability of VUV-LDI, we achieve precise ablation of a single-cell membrane.

View Article and Find Full Text PDF

A novel gene variant c.525_533del causing Barth syndrome and leading to heart transplantation: a case report.

Front Pediatr

August 2025

Department of Cardiac, Vascular and Endovascular Surgery and Transplantology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Silesian Center for Heart Diseases in Zabrze, Zabrze, Poland.

Introduction: Barth syndrome (BTHS) is an ultra-rare genetic disease caused by a mutation in the gene, located on the X chromosome. This gene codes for the protein tafazzin, which is involved in the metabolism of the mitochondrial phospholipid - cardiolipin. Symptoms of this genetic defect include dilated cardiomyopathy (DCM), skeletal myopathy, neutropenia, growth retardation, reduced cholesterol levels, increased serum lactic acid levels, and hypoglycemia in the neonatal period.

View Article and Find Full Text PDF

Purpose: The significant lens chaperone protein α-crystallin (αABc), comprised of αA-crystallin (αAc) and αB-crystallin (αBc) subunits, is found to form membrane-bound aggregates with age and cataract formation. However, the molecular basis for such aggregate formation is still unclear. Our research primarily aims to elucidate the effect of lipids (phospholipids and sphingolipids) and cholesterol (Chol) peroxidation on the aggregation of αAc, αBc, and αABc to bovine lens nuclear membrane (NM).

View Article and Find Full Text PDF